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The mouse hindlimb is the most widely 
used model to assess vascular responses 
to ischemia and test new strategies for 
the treatment of peripheral artery disease 
(1–4). In these models, the femoral artery 
(FA) is excised, test therapies are admin-
istered, and recovery is followed over a 
period of weeks (1). A drawback to the 
mouse models is a limitation in available 
technology to image and characterize 
the vasculature directly. Typically, laser 
Doppler imaging and capillary density 
quantification by immunostaining of tissue 
sections are used to assess recovery. These 
measurements do not provide information 
on vasculature organization or remodeling 
of vessels. Vascular architecture is routinely 
monitored by contrast angiography in larger 
animals and humans (5). For the mouse 
such measurements require sophisticated 

instrumentation that for many labora-
tories is prohibitively expensive ($0.5M–
3M), technically demanding, and both 
time- and labor-intensive. Techniques with 
the capability to image the mouse vascu-
lature include micro-computed tomog-
raphy (6), magnetic resonance imaging (7), 
X-ray angiography (8), particle perfusion 
(9), Doppler micro-angiography (10), and 
vascular casting (11). With the possible 
exception of micro-CT, most of these 
techniques are also limited in the simulta-
neous resolution of capillaries and arteries 
in the mouse.

Here, we provide a simple, inexpensive, 
and rapid alternative to these techniques 
that allows precise visualization of the 
vasculature within the sagittal plane of 
the mouse hindlimb in whole-mount 
preparations using modifications of the 

procedure described by Li et al. (12). The 
procedure takes advantage of the hydro-
phobic partitioning of the lipophilic 
carbocyanine dye 1,1′-dioctadecyl-3,3,3′,3′-
tetramethylindocarbocyanine perchlorate 
(DiI) that incorporates into endothelial 
cells and undergoes lateral diffusion (12). 
Our adaptations include the following:

Step 1: The vascular system was flushed 
with PBS and stained with DiI as described 
in the original protocol (12). Then prior to 
fixation, the limb was skinned to expose 
the adductor muscles. To do this, forceps 
were used to lift the skin overlying the 
ankle. An incision was made across the 
medial sagittal plane of the limb up to the 
groin. The skin was cut circumferentially 
around the proximal portion of the limb 
and distally where the foot and ankle join. 
The edges of the major sagittal cut were 
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Benchmarks

Method summary:
A protocol is described to generate 3D quantifiable images of the entire mouse hindlimb vasculature. (i) The vascular system is flushed 
sequentially with PBS and stained with DiI. (ii) The limb is skinned. (iii) The vasculature is infused with 4% PFA. (iv) The limb is 
severed and sandwiched between micro glass coverslips and compressed. (v) Partial desiccation is implemented by blowing filtered dry 
air between the plates. (vi) The limb surfaces are imaged on a confocal microscope and reconstructed into composite 35–5x fields using 
Zen software. 3D composites of stacked Z-series are rendered using Volocity software.
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then gently pulled around the back of the 
limb. After skinning, the hindlimb was 
perfused with 4% PFA (5mL) by hand 
using interchangeable 10mL syringes and 
a butterfly needle at a flow rate of 1–2 mL/
min. After fixing, the limb was severed from 
the trunk, rinsed, and fat and connective 
tissue dissected. The arteria epigastrica were 
severed at the point where they meet the 
FA.

Step 2: The moistened limb was 
sandwiched between two 43 × 50mm micro-
glass coverslips and compressed between the 
glass by applying a small (<200 g) weight 
uniformly over the coverslip, sufficient to 
maintain tight contact between the glass 

and the muscle surface. Compression and 
drying were performed simultaneously. Air 
was blown perpendicularly to the plane of 
the glass at a rate of 28.3 LPM through 
silicone tubing attached to in-house air for 
2–3 h. This process reduces cross-sectional 
thickness and enhances tissue clarity 
without requiring optical clearing that can 
disrupt lipophilic stains (13).

Step 3: Samples were imaged on a Zeiss 
LSM 710 confocal microscope using 
optimal step size settings. The entire 
surface of the upper limb was imaged and 
reconstructed into a composite of 35–5x 
fields using Zen software. 3D composites 
of stacked Z-series were rendered using 

Volocity software (Improvision, Perkin-
Elmer, Waltham, MA) (14).

During compression-desiccation the 
limb loses about 25% of mass but the 
vascular architecture remains intact, 
there are minimal changes in vessel shape, 
and resolution is dramatically enhanced 
(Figure 1A). These results demonstrate the 
improvement in vascular imaging obtained 
through our modifications over the original 
protocol described by Li et al. (12).

To illustrate the utility of our technique, 
we quantified changes in capillary density 
and arterial diameter in the adductor 
muscles of C57/BL6 mice at an early time 
point after ischemia. As shown in Figure 
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Figure 1. Comparison of vasculature in normal versus ischemic hindlimb of c57/bl6 mice. (A) Section of DFA before and after compression/desiccation 
processing. Top panels were imaged with identical settings; bottom panel shows Adobe Photoshop-enhanced brightness/contrast of the fresh sample to 
allow a comparison of the vessel images and evaluate the effects of processing on vessel dimensions. (B) Composite 5× images of the superficial femoral 
artery and vein, deep femoral artery, popliteal artery and saphenous artery and vein are shown in normal (left) and ischemic (right) hindlimb 1-week after 
femoral artery ligation/excision surgery. Composite 10× fields of view (lower panels, which correspond to the yellow boxes in the upper panels) highlight 
regions of the gastrocnemicus vasculature that were analyzed for vascular density and are rendered in an XYZ plane. DFA, deep femoral artery; FA/FV, 
superficial femoral artery/vein; PA, popliteal artery; SA/SV, saphenous artery/vein. (C) Volumetric analysis of composite DiI images of 10x fields of view (n = 
16 FOV, n = 3 mice) demonstrate 2.7 times higher density of DiI fluorescence per µm3 in normal gastrocnemicus muscle. *P < 0.01; ± standard deviation. 
(D) 10× fields of view of the deep femoral artery in normal and ischemic hindlimbs along the X-Y-Z axes. (E) Cross sectional measurements of the DFA were 
determined at 10 locations and a mean diameter for each limb was calculated (n = 3 mice per group; *P < 0.05, ± standard deviation).
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1B, the rich supply of capillaries emanating 
from the FA close to the popliteal branch is 
eliminated by FA excision and accounts at 
least in part for the loss in capillary density 
by ischemia; 16 separate fields of view from 
three different mice were used to obtain 
the values of mean vessel density shown in 
Figure 1C. The results suggest that capillary 
regeneration at this time point does not 
compensate for local ischemia-induced loss. 
Figure 1D (and see online movies in Supple-
mentary materials), shows that ischemia 
caused significantly increased diameter 
of the DFA. The average diameter 1-week 
after femoral artery excision was increased 
72% compared with the contralateral 
(Figure 1E). This result is in agreement 
with a previous report on ischemia-induced 
enlargement of the DFA (9).

As a second illustration of the utility 
of the method we quantified additional 
vascular parameters at a late time point 
after ischemia in the hindlimb of BALB/c 
mice subjected to concurrent gene therapy. 
Unlike C57/BL6, the hindlimbs of BALB/c 
mice are defective in endogenous collateral 
regeneration (15), and as a consequence the 
lower limb rapidly auto-amputates below 
the knee after FA excision. We found 
that AAV-CMV-VEGF therapy in the 

BALB/c model enhanced angiogenesis 
after FA excision but did not support limb 
salvage despite sustained VEGF expression 
(results not shown). The long-term effects 
of sustained VEGF expression by AAV 
on the mouse hindlimb vasculature are 
not known. Therefore we used the DiI 
staining method to analyze these at 8 
months following treatment. Figure 2A 
shows examples of age-matched limbs 
and in Figures 2B-2D vascular param-
eters were quantified. We found that the 
mean vascular density in normal limbs 
was 2.8 fold greater than in the ischemia-
VEGF treatments (Figure 2B; P < 0.0001). 
Measurements for bearing (vessel direction 
relative to the femoral nerve) (Figure 2C) 
and length of large vessels (Figure 2D) were 
obtained by using the line tool of Volocity. 
The analyses show that the vasculature 
created by AAV-CMV-VEGF therapy 
diverges significantly in terms of vessel 
quantity, size, and orientation compared 
with the original vasculature. ,We found 
that ischemic limbs treated with PBS were 
similar to the VEGF treatments (data not 
shown), suggesting absence of any sustained 
effects of AAV-CMV-VEGF on the vascu-
lature. These results are consistent with 
previous findings that VEGF gene therapy 

does not support the production of new 
collateral vessels (16) and further indicate 
that chronic VEGF overexpression by AAV 
in this model does not enhance capillary 
density.

Supplementary Figure S1 shows a 
typical composite DiI image of an intact 
femoral artery from a C57/BL6 mouse 
with enlarged sections identified by 
color-coded boxes. This again illustrates 
the high resolution and flexibility of the 
method wherein any section of the image 
can be selected for detailed analysis and 3D 
rendering. Images of the toenail (red panel) 
are, to our knowledge, the first-ever images 
of a mouse toenail vasculature, a useful 
parameter because this is where ischemia-
induced necrosis usually begins.

The cost of the procedure is $1–2 
per mouse and can be completed in an 
afternoon. The resolution around the 
FA is superior to micro-angiography and 
information on the vascular architecture 
approaches that of micro-CT.
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