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discusses the existing challenges that can 
potentially impact the practical use of this 
tool; it concludes with perspectives and 
potential applications.

STEP EMULSIFICATION
The step emulsification was first proposed 
by Kawakatsu et al. in 1997 [1]. It is a droplet 
microfluidics technique that offers the 
detection and precise control of two incom-
patible fluids at the microscale. Step emulsi-
fication can produce monodispersed 
emulsion droplets, ranging from the 
submicron range to around 1000 μm [2,3], 
with a small coefficient of variation (CV). The 
use of the monodispersed emulsion droplets 
expands the applications of medicine [4], 
biotechnology [5–7] and biology [8,9]. 
Monodispersed droplets are also applied in 
the food [10], cosmetics [11] and chemical 
industries [12]. The CV of droplets is typically 
<5% in many step emulsification studies as 
the standard CV [13–15]. Using droplets with 
a small CV as miniature test tubes can 
improve the standardization and predict-
ability of assays and increase the signal-to-
noise ratio. Another merit of step 
emulsification is that it is relatively easy to 
parallelize to produce uniform droplets with 
high throughput [16–18]. At this time, a variety 
of encapsulated products can be produced 
using step emulsification, ranging from single 
to multiple emulsions, microcapsules, micro-
spheres and many others [10,19–21].

DROPLET GENERATION IN 
STEP EMULSIFICATION
In step emulsification, droplets are generated 
by the spontaneous transformation of an 
oil–water interface [22], with the flow of the 
dispersed phase into the continuous phase 
through a rectangular microchannel [16–23], 
as shown in Figure 1. Microchannel arrays 
have been fabricated on a variety of 
substrates, such as a silicon-on-insulator 
and single silicon crystal, owing to the 
surface properties that can easily be 
modified using hydrophilic and hydrophobic 

treatments [24]. Microchannel arrays can 
also be produced with materials such as 
borosilicate glass, expanding the applica-
bi l i ty to chemically aggressive 
fluids [17,25,26]. Because of the sponta-
neous droplet generation process, step 
emulsification is highly energy efficient, with 
typical energy input. However, the mild 
droplet generation in step emulsification, 
with no involvement of energy, makes it a 
preferable system to prevent denaturation 
of sensitive bioactive compounds [10,27]. 
Because the droplet generation process in 
step emulsification is mainly driven by inter-
facial tension, rather than high-energy shear 
stress systems, the droplet size is 
independent of the flow rates of both the 
continuous and the dispersed phases [14,28]. 
Therefore, there is no requirement for 
expensive gas regulators or precision pumps 
for preparing a monodispersed emulsion. 
The step emulsification devices can even be 
operated by manual injection of the 
dispersed phase to produce droplets with a 
small CV. Moreover, there are numerous 
papers on step emulsification with varied 
nozzle type and geometry. These nozzle 
variations significantly influence the degree 
and type of droplet size dependency on 
parameters such as volume flow rate. 
Although in most cases the mechanism of 
the droplet breakup itself is independent of 
dispersing and continuous volume flows, 
the droplet size can be influenced by the 
disperse flow rate. The dependency is 
smaller compared with other microfluidic 
droplet generation methods; however, it is 
significant [13]. The degree of dependency 
varies with type and the geometry of the step 
(straight/trapezoid/terraced/millipede 
etc.) [28,29]. Because of the importance of 
a stable and monodispersed droplet gener-
ation for industrial applications, these 
phenomena must be taken into consider-
ation when designing new microreactors.

The droplet generation process in step 
emulsification has been evaluated using 
a variety of simulation methods such as 
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S tep emulsification is a promising 
method for the production of 
monodisperse droplets. Its main 

advantage is that its geometry allows 
massive parallelization of multiple nozzles 
to achieve high-throughput production of 
droplets. As the droplet generation process 
in step emulsification is mainly driven by 
interfacial tension rather than high energy 
shear stress systems, the droplet size is 
independent of the flow rates of both the 
continuous and the dispersed phases. 
Therefore, the high productivity of droplets 
(>100 l/h) and an excellent diameter coeffi-
cient of variation (<5%) can be guaranteed 
simultaneously, which makes step emulsi-
fication a potential tool for real industrial 
applications. This article provides an 
overview of step emulsification and 
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computational fluid dynamics [30] and 
Lattice Boltzmann methods [31,32] and 
using the experimental approach with 
high-speed microscopy [17]. They all 
conclude that the nozzle height deter-
mines the maximum production rate and 
diameter of the monodisperse droplet in 
step emulsification device. Even though 
the nozzle height restricted the maximum 
production rate and the diameter of the 
droplets, numerous scientific works have 
already been done to address some of the 
challenges in increasing the production rate. 
Xu et al. reported a high aspect ratio (>3.5) 
step emulsification, which can produce 
15,000 droplets per second with 2000 
nozzles, with a CV below 3% [33]. Schuler 
et al. demonstrated a straightforward step 
emulsification system without any oil flow, 
which uses centrifugal forces to produce 
500 droplets per nozzle (parallelization 
with 23 nozzles) with a CV between 2 and 
4% [34]. Recently, Schuler et al. demon-
strated a step emulsification system, which 
employed buoyancy in the centrifugal field 
to realize increased droplet generation of 
2800 droplets per second and nozzle, with 
a CV below 5%. Droplet generation rates 
are about a factor eight above the critical 
capillary number. The main advantage is that 
a single nozzle is used in which manufac-
turing tolerances do not influence droplet 
generation rates [35]. Dangla et al. reported 

a droplet microfluidics system driven by 
gradients of confinement, single droplet 
generation as well as high throughput is 
demonstrated. Although the methodology 
is not strictly the step emulsification, the 
gradient confinement method is very 
close to it because droplet formation also 
depends on the geometry and very weakly 
on the flow rate. Droplet breakup is driven by 
surface tension. The only difference is that 
no step is employed but rather an inclined 
surface to change the surface energy [36]. 
Because of the profound engineering 
and scientific standards of step emulsifi-
cation, to find more detailed descriptions 
and discussions about droplet formation 
mechanism, device fabrication and various 
applications, the reader is advised to study 
some of the excellent reviews and papers 
on the topic [37–44].

CHALLENGES & FUTURE 
PERSPECTIVE
Step emulsification can be useful for appli-
cations that need large-scale production of 
monodispersed droplets or encapsulating 
perishable samples. Despite the many 
compelling developments, there remains 
effort that needs to be put into bringing step 
emulsification out of the laboratory as an 
industrialized technology. First, researchers 
should focus on the basic research of step 
emulsification. Although droplet breakup 

dynamics have been explored [13], to our 
knowledge, no model exists to figure out 
precisely the diameter of droplets. More 
in-depth investigations of the relationship 
between droplet diameter and other param-
eters (flow rate, viscosity, microchannel 
geometry and temperature) are still 
expected. Second, mass production is a 
crucial issue. To lower the cost and to 
improve the throughput of the device simul-
taneously, the materials and the bonding 
approaches of the layers should be explored 
and prudently selected. Third, the nanodro-
plets (diameter of the droplet is nanoscale) 
can be used as small containers that will 
encapsulate one molecule per droplet, 
forming a high-throughput robust tool for 
single molecular studies. Fourth, step 
emulsification should not be separated from 
biomedical research, such as drug delivery 
[45], biomedical imaging [46,47], bioregen-
eration [48,49] and biosensing [50,51]. It can 
make full use of the advantage of high 
throughput when the functional biomate-
rials are encapsulated in droplets by step 
emulsification. Additionally, they can be 
integrated to synergetically promote real 
industrial applications, especially in the 
biomedical field. Therefore, more collabor-
ative effort is still needed from researchers 
and entrepreneurs to achieve industrial-
level high-throughput production of 
nanodroplet emulsions. We hope this article 
will stimulate researchers from different 
backgrounds to work on addressing the 
problems described previously and to make 
contributions to push step emulsification 
forward to become a robust industrial 
technology.
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