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Mass spectrometry imaging
As a powerful label-free analysis tool, mass spectrometry imaging (MSI) enables simultaneous detection and
visualization of molecular species, such as lipids, proteins, peptides, glycans, metabolites and therapeutics, in a
variety of biological samples [1]. Among the MSI techniques currently available, two important ones are MALDI
imaging and desorption electrospray ionization imaging. In an MSI experiment, followed by simple but careful
sample preparation, the mass spectrometer ionizes the analytes at each x, y coordinate on the section surface,
resulting in an ordered array of mass spectra. Computational software and statistical analysis can then be used to
reconstruct the ion density maps of various m/z values. After the candidate m/z values are determined, accurate
mass matching to databases of known molecules or tandem MS (MS/MS) fragmentation can then be performed
to determine the identities further.

In recent years, with advances in instrumentation and techniques, MSI has become more widely applied in
different fields including pharmacology and clinical practice [2,3]. However, since the sensitivity, accuracy, acquisition
speed, spatial resolution, mass resolution and throughput of MSI analysis has improved tremendously, the amount,
dimensionality, as well as the complexity of datasets generated by MSI has also significantly increased. To interpret
this huge amount of data, and extract essential chemical and spatial information more comprehensively and
efficiently, there is an increasing interest in applying informatic approaches based on specialized machine learning
(ML) algorithms to match the current demand [4,5]. The aim of this article is to provide the reader a brief overview
onto how ML approaches could help process and elaborate complex imaging data, to provide a valuable molecular
insight into different biological specimens, and make the MSI techniques more versatile and translatable in solving
clinical problems.

ML approaches in MSI
During MSI statistical analysis, ML algorithms are implemented to detect patterns and structures within the data.
Specifically, supervised and unsupervised ML algorithms are widely used for data classification and data clustering,
respectively [5].

Supervised ML & applications
Supervised ML algorithms are effective in predicting patterns and features of a dataset with labels, which generally
involves three steps: labeled training data selection, model optimization/validation and prediction of a new unlabeled
dataset. It is frequently used to address classification problems to discriminate between groups of samples under
different conditions. Clinically, the two most commonly used supervised algorithms are support vector machines
(SVM) and random forest (RF) [5]. SVM can go beyond the computational limitation of linear classification by
introducing kernel function. While RF is efficient in analyzing large datasets and robust in handling overfitting
issues.
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SVM-based classification and RF algorithms have been successfully applied to derive information from MSI
results on a variety of biological specimens, such as cancer patient tissue samples. It was reported that these
approaches were utilized to accurately and reliably discriminate different cancer types, including thyroid cancer,
breast cancer, colon cancer and liver cancer [6,7], by analyzing MALDI imaging data acquired from bioptic samples,
thus assisting in determining the origin of the tumorigenesis irrespective of the metastatic sites. ML-assisted MSI has
also been applied to assess patient tissue samples in identifying survival and recurrence-associated protein signatures
in melanoma metastases [8] and sarcomas [9]. Another example is that HER2 expression level significantly correlates
with breast cancer and gastric cancer patient outcomes. With implementing supervised ML algorithms on MALDI
data from patient tissue samples, HER2 level could be deduced with high accuracy, sensitivity and specificity [10,11].

Supervised ML algorithms could also be used to depict tumor margins and microenvironment in the clinic.
An analysis using ML methods to identify the margins of clear cell renal cell carcinoma suggested that adapting
such approaches can better define tumor margins, resulting in more thorough tumor extirpation and reducing
local recurrence [12]. In addition, a study using desorption electrospray ionization lipid imaging-derived classifier
rapidly and precisely classified gliomas into different subtypes and grades [13], which provides critical surgery-related
information to surgeons and pathologists, and is potentially applicable to real-time analyses.

In short, supervised ML classification is an invaluable tool to elucidate subtle molecular characteristics of different
biological samples, thus enhancing the quality and accuracy of information obtained from a MSI analysis.

Unsupervised ML & applications
Compared with supervised ML, unsupervised ML methods do not require sample labeling, or previous knowledge,
to highlight categories of the datasets. Thus, unsupervised learning could be used for exploratory data analysis either
due to the lack of comprehensive information of the samples or the expectation to find hidden patterns that have
not previously been discovered. In MSI, as a classical unsupervised task, clustering/segmentation is used to group
spatially resolved spectra based on similar characteristics they share, and new samples can further be assigned to
the identified clusters according to their spectral similarity. In clinical studies, this approach can also be applied as
partially supervised, since pathologists could impose the correct number of clusters (dendrogram) based on visual
inspection.

The common unsupervised algorithms include k-means, hierarchical clustering, partitioning around medoids
(PAM) and density-based spatial clustering of applications with noise [14]. k-means is a well-known method, but it
is sensitive to anomalous data points and outliers, while PAM is more robust to process data containing outliers.
Hierarchical clustering is another widely used approach, which has an added advantage of interactive analysis of the
clustering dendrogram over k-means but needs a large amount of memory to keep the full distance matrix. Density-
based spatial clustering of applications with noise has also become more popular due to its superior capability to
handle noisy data and pick up outliers.

MSI combined with clustering analysis has achieved many successes in recognizing the heterogeneity of mor-
phologically similar, and neighboring cells. A good example is to utilize this approach clustering subpopulations
of tumor cells or regions in tumor sections. It has been used to depict gastric cancer tissue subareas from patient
sample sections more in detail than histological staining, helping to define and evaluate the sample more efficiently
and accurately [15]. Unsupervised ML was also applied on MSI data to reveal subpopulations in sarcomas [16] and
3D colorectal adenocarcinoma biopsies [17] to find heterogeneous types of cells, which are difficult to be identified
with staining methods. The trained model can quickly and precisely process 3D MSI datasets, thus eliminating
time-consuming procedures needed for individual images. In a more recent study, MALDI imaging was imple-
mented with PAM clustering analysis on colorectal cancer large-scale tissue microarrays, revealing a handful of
clinically relevant implications, such as status, grade and prognosis simultaneously [18]. In summary, these studies
provided insights of tumor heterogeneity and prospective biomarkers by looking at samples at the molecular level
based on the robust unsupervised ML analysis of MS imaging datasets.

Other considerations
In most of the instances, analytical and technical variability or artifacts exists in MSI studies. For raw data
collected, preprocessing steps including smoothing, baseline correction, normalization, peak alignment and picking
are required to improve the data quality, and make spectra acquired comparable within the same experiment
and in distinct analyses. Additionally, data dimensionality still presents a big limitation. Due to the intrinsic
high-dimensionality of MSI data containing both molecular and spatial information of each pixel, dimensionality
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reduction is also needed for eliminating noise and irrelevant features, while preserving important information and
making the datasets more suitable for a robust and efficient ML analysis. Several techniques based on either linear
or nonlinear mapping of the data to the low-dimensional space are available, such as principal component analysis,
probabilistic latent semantic analysi, self-organized maps and t-SNE [17]. However, more better-performing methods
are still highly needed, and these various data reduction methods should always be tested in new circumstances to
identify the most reliable one.

Conclusion & future perspective
With the technological developments in specificity, sensitivity and resolution, MSI has become a promising tool
in solving clinical problems to help with diagnosis, prognosis and individualized therapy by providing invaluable
molecular insights in specimens. 3D and single-cell resolution imaging using MS are also emerging as new frontiers.
To help with analyzing the large imaging datasets produced with modern instruments, statistical workflows and
the state-of-the-art ML approaches, as well as the improvements in software and hardware will greatly promote the
MSI technologies to be employed in the daily clinical routine practice. It is also conceivable that in the near future,
automation will be more accessible in generating MSI data, which will lead to a continuous exponential growth in
the data volume. In the era of big data, more powerful algorithms are in great need to make automatic, efficient
and easy-to-use software to meet the demand for the automated data analysis.
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