We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Covalent organic frameworks: spotlight on applications in the pharmaceutical arena

    Pushpa Pilli

    Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Balanagar, Telangana, 500037, India

    ,
    Hema Sree Kommalapati

    Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Balanagar, Telangana, 500037, India

    ,
    Vijaya Madhyanapu Golla

    Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Balanagar, Telangana, 500037, India

    ,
    Rahul Khemchandani

    Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Balanagar, Telangana, 500037, India

    ,
    Roshitha Kunnath Ramachandran

    Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Balanagar, Telangana, 500037, India

    &
    Gananadhamu Samanthula

    *Author for correspondence: Tel.: +91 918 282 6407;

    E-mail Address: gana.niperhyd@gov.in

    Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Balanagar, Telangana, 500037, India

    Published Online:https://doi.org/10.4155/bio-2023-0256

    Covalent organic frameworks (COFs) have much potential in the field of analytical separation research due to their distinctive characteristics, including easy modification, low densities, large specific surface areas and permanent porosity. This article provides a historical overview of the synthesis and broad perspectives on the applications of COFs. The use of COF-based membranes in gas separation, water treatment (desalination, heavy metals and dye removal), membrane filtration, photoconduction, sensing and fuel cells is also covered. However, these COFs also demonstrate great promise as solid-phase extraction sorbents and solid-phase microextraction coatings. In addition to various separation applications, this work aims to highlight important advancements in the synthesis of COFs for chiral and isomeric compounds.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Feng X, Ding X, Jiang D. Covalent organic frameworks. Chem. Soc. Rev. 41(18), 6010–6022 (2012). •• Reviews the basic synthesis, design and functionalities of covalent organic frameworks (COFs).
    • 2. Geng K, He T, Liu R et al. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 120(16), 8814–8933 (2020).
    • 3. Ding S-Y, Wang W. Covalent organic frameworks (COFs), from design to applications. Chem. Soc. Rev. 42(2), 548–568 (2013). •• Habitual and emerging applications of COFs are thoroughly reviewed.
    • 4. Davis ME. Ordered porous materials for emerging applications. Nature 417(6891), 813–821 (2002).
    • 5. Greim J, Schwetz KA. Boron carbide, boron nitride, and metal borides. In: Ullmann's Encyclopedia of Industrial Chemistry. Wiley online library, NJ, USA (2000).
    • 6. McCrum NG, Buckley CP, Bucknall CB. Principles of Polymer Engineering. Oxford University Press, Oxford, UK (1997).
    • 7. Dawson R, Cooper AI, Adams DJ. Nanoporous organic polymer networks. Prog. Polym. Sci. 37(4), 530–563 (2012).
    • 8. Dalapati S, Gu C, Jiang D. Luminescent porous polymers based on aggregation-induced mechanism: design, synthesis and functions. Small 12(47), 6513–6527 (2016).
    • 9. Waller PJ, Gándara F, Yaghi OM. Chemistry of covalent organic frameworks. Acc. Chem. Res. 48(12), 3053–3063 (2015).
    • 10. Di Vona ML, Marani D, D'Ottavi C et al. A simple new route to covalent organic/inorganic hybrid proton exchange polymeric membranes. Chem. Mater. 18(1), 69–75 (2006).
    • 11. Wang J, Zhuang S. Covalent organic frameworks (COFs) for environmental applications. Coord. Chem. Rev. 400, 213046–213061 (2019).
    • 12. Qian H-L, Yang C-X, Wang W-L, Yang C, Yan X-P. Advances in covalent organic frameworks in separation science. J. Chromatogr. A 1542, 1–18 (2018). •• Analytical separation science applications of COFs are explained along with numerous examples.
    • 13. Vyas VS, Vishwakarma M, Moudrakovski I et al. Exploiting noncovalent interactions in an imine-based covalent organic framework for quercetin delivery. Adv. Mater. 28(39), 8749–8754 (2016).
    • 14. Zhang S, Zheng Y, An H et al. Covalent organic frameworks with chirality enriched by biomolecules for efficient chiral separation. Angew. Chem. Int. Ed. Engl. 57(51), 16754–16759 (2018).
    • 15. Mastalerz M. The next generation of shape-persistant zeolite analogues: covalent organic frameworks. Angew. Chem. Int. Ed. Engl. 47(3), 445–447 (2008).
    • 16. Cote AP, Benin AI, Ockwig NW, O'Keeffe M, Matzger AJ, Yaghi OM. Porous, crystalline, covalent organic frameworks. Science 310(5751), 1166–1170 (2005).
    • 17. Li Y, Karimi M, Gong Y-N, Dai N, Safarifard V, Jiang H-L. Integration of metal-organic frameworks and covalent organic frameworks: design, synthesis, and applications. Matter 4(7), 2230–2265 (2021). •• Advancements in the evolution of COFs by integration with metal-organic frameworks are detailed and their utilization is explored.
    • 18. Jiao L, Wang Y, Jiang HL, Xu Q. Metal–organic frameworks as platforms for catalytic applications. Adv. Mater. 30(37), 1703663 (2018).
    • 19. Lohse MS, Bein T. Covalent organic frameworks: structures, synthesis, and applications. Adv. Funct. Mater. 28(33), 1705553 (2018).
    • 20. Simon-Yarza T, Mielcarek A, Couvreur P, Serre C. Nanoparticles of metal-organic frameworks: on the road to in vivo efficacy in biomedicine. Adv. Mater. 30(37), 1707365 (2018).
    • 21. Yuan S, Feng L, Wang K et al. Stable metal–organic frameworks: design, synthesis, and applications. Adv. Mater. 30(37), 1704303 (2018).
    • 22. González-Sálamo J, Jiménez-Skrzypek G, Ortega-Zamora C, González-Curbelo MÁ, Hernández-Borges J. Covalent organic frameworks in sample preparation. Molecules 25(14), 3288 (2020).
    • 23. Cote AP, El-Kaderi HM, Furukawa H, Hunt JR, Yaghi OM. Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. J. Am. Chem. Soc. 129(43), 12914–12915 (2007).
    • 24. Wan S, Guo J, Kim J, Ihee H, Jiang D. A belt-shaped, blue luminescent, and semiconducting covalent organic framework. Angew. Chem. 120(46), 8958–8962 (2008).
    • 25. Hunt JR, Doonan CJ, LeVangie JD, Côté AP, Yaghi OM. Reticular synthesis of covalent organic borosilicate frameworks. J. Am. Chem. Soc. 130(36), 11872–11873 (2008).
    • 26. Kuhn P, Antonietti M, Thomas A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. Engl. 47(18), 3450–3453 (2008).
    • 27. Uribe-Romo FJ, Hunt JR, Furukawa H, Klock C, O'Keeffe M, Yaghi OM. A crystalline imine-linked 3-D porous covalent organic framework. J. Am. Chem. Soc. 131(13), 4570–4571 (2009).
    • 28. Uribe-Romo FJ, Doonan CJ, Furukawa H, Oisaki K, Yaghi OM. Crystalline covalent organic frameworks with hydrazone linkages. J. Am. Chem. Soc. 133(30), 11478–11481 (2011).
    • 29. Jackson KT, Reich TE, El-Kaderi HM. Targeted synthesis of a porous borazine-linked covalent organic framework. Chem. Commun. 48(70), 8823–8825 (2012).
    • 30. Nagai A, Chen X, Feng X, Ding X, Guo Z, Jiang D. A squaraine-linked mesoporous covalent organic framework. Angew. Chem. 125(13), 3858–3862 (2013).
    • 31. Dalapati S, Jin S, Gao J, Xu Y, Nagai A, Jiang D. An azine-linked covalent organic framework. J. Am. Chem. Soc. 135(46), 17310–17313 (2013).
    • 32. Guo J, Xu Y, Jin S et al. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds. Nat. Commun. 4(1), 2736 (2013).
    • 33. Fang Q, Zhuang Z, Gu S et al. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nat. Commun. 5(1), 4503 (2014).
    • 34. Chen X, Addicoat M, Jin E et al. Designed synthesis of double-stage two-dimensional covalent organic frameworks. Sci. Rep. 5(1), 14650 (2015).
    • 35. Du Y, Yang H, Whiteley JM et al. Ionic covalent organic frameworks with spiroborate linkage. Angew. Chem. Int. Ed. Engl. 55(5), 1737–1741 (2016).
    • 36. Jin E, Asada M, Xu Q et al. Two-dimensional sp2 carbon–conjugated covalent organic frameworks. Science 357(6352), 673–676 (2017).
    • 37. Waller PJ, Lyle SJ, Osborn Popp TM, Diercks CS, Reimer JA, Yaghi OM. Chemical conversion of linkages in covalent organic frameworks. J. Am. Chem. Soc. 138(48), 15519–15522 (2016).
    • 38. Das G, Skorjanc T, Sharma SK et al. Viologen-based conjugated covalent organic networks via Zincke reaction. J. Am. Chem. Soc. 139(28), 9558–9565 (2017).
    • 39. Yahiaoui O, Fitch AN, Hoffmann F, Fröba M, Thomas A, Roeser J. 3D anionic silicate covalent organic framework with SRS topology. J. Am. Chem. Soc. 140(16), 5330–5333 (2018).
    • 40. Zhang B, Wei M, Mao H et al. Crystalline dioxin-linked covalent organic frameworks from irreversible reactions. J. Am. Chem. Soc. 140(40), 12715–12719 (2018).
    • 41. Zhao C, Diercks CS, Zhu C, Hanikel N, Pei X, Yaghi OM. Urea-linked covalent organic frameworks. J. Am. Chem. Soc. 140(48), 16438–16441 (2018).
    • 42. Xu L, Ding S-Y, Liu J, Sun J, Wang W, Zheng Q-Y. Highly crystalline covalent organic frameworks from flexible building blocks. Chem. Commun. 52(25), 4706–4709 (2016).
    • 43. Wei H, Chai S, Hu N, Yang Z, Wei L, Wang L. The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity. Chem. Commun. 51(61), 12178–12181 (2015).
    • 44. Campbell NL, Clowes R, Ritchie LK, Cooper AI. Rapid microwave synthesis and purification of porous covalent organic frameworks. Chem. Mater. 21(2), 204–206 (2009).
    • 45. Ritchie LK, Trewin A, Reguera-Galan A, Hasell T, Cooper AI. Synthesis of COF-5 using microwave irradiation and conventional solvothermal routes. Microporous Mesoporous Mater. 132(1–2), 132–136 (2010).
    • 46. Dey K, Pal M, Rout KC et al. Selective molecular separation by interfacially crystallized covalent organic framework thin films. J. Am. Chem. Soc. 139(37), 13083–13091 (2017).
    • 47. Zhang Y-B, Su J, Furukawa H et al. Single-crystal structure of a covalent organic framework. J. Am. Chem. Soc. 135(44), 16336–16339 (2013).
    • 48. Tylianakis E, Klontzas E, Froudakis GE. Multi-scale theoretical investigation of hydrogen storage in covalent organic frameworks. Nanoscale 3(3), 856–869 (2011).
    • 49. Ma T, Kapustin EA, Yin SX et al. Single-crystal x-ray diffraction structures of covalent organic frameworks. Science 361(6397), 48–52 (2018).
    • 50. Li RL, Flanders NC, Evans AM et al. Controlled growth of imine-linked two-dimensional covalent organic framework nanoparticles. Chem. Sci. 10(13), 3796–3801 (2019).
    • 51. Liu Y, Chen P, Wang Y et al. Design and synthesis of a zeolitic organic framework. Angew. Chem. Int. Ed. Engl. 61(24), e202203584 (2022).
    • 52. Tilford RW, Gemmill WR, zur Loye H-C, Lavigne JJ. Facile synthesis of a highly crystalline, covalently linked porous boronate network. Chem. Mater. 18(22), 5296–5301 (2006).
    • 53. Chan-Thaw CE, Villa A, Prati L, Thomas A. Triazine-based polymers as nanostructured supports for the liquid-phase oxidation of alcohols. Chem. A Eur. J. 17(3), 1052–1057 (2011).
    • 54. Guan X, Li H, Ma Y et al. Chemically stable polyarylether-based covalent organic frameworks. Nat. Chem. 11(6), 587–594 (2019).
    • 55. Thanh-Tam T. β-ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J. Am. Chem. Soc. 135(45), 16821–16824 (2013).
    • 56. Knauss S. Thiophene-based covalent organic frameworks. Am. Chem. Soc. SciMeetings 1(1), 4923–4928 (2017).
    • 57. Medina DD, Werner V, Auras F et al. Oriented thin films of a benzodithiophene covalent organic framework. ACS Nano 8(4), 4042–4052 (2014).
    • 58. Cao D, Lan J, Wang W, Smit B. Lithium-doped 3D covalent organic frameworks: high-capacity hydrogen storage materials. Angew. Chem. Int. Ed. Engl. 48(26), 4730–4733 (2009).
    • 59. DeBlase CR, Silberstein KE, Truong T-T, Abruña HD, Dichtel WR. β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J. Am. Chem. Soc. 135(45), 16821–16824 (2013).
    • 60. Lu H, Wang C, Chen J et al. A novel 3D covalent organic framework membrane grown on a porous α-Al2O3 substrate under solvothermal conditions. Chem. Commun. 51(85), 15562–15565 (2015).
    • 61. Zha Z, Xu L, Wang Z et al. 3D graphene functionalized by covalent organic framework thin film as capacitive electrode in alkaline media. ACS Appl. Mater. Interfaces 7(32), 17837–17843 (2015).
    • 62. Bao T, Tang P, Kong D, Mao Z, Chen Z. Polydopamine-supported immobilization of covalent-organic framework-5 in capillary as stationary phase for electrochromatographic separation. J. Chromatogr. A 1445, 140–148 (2016).
    • 63. Yinghong H, Mirjam D, Veronika W, Florian A, Paul K, Thomas B. Room temperature synthesis of covalent–organic framework films through vapor-assisted conversion. J. Am. Chem. Soc. 137(3), 1007–1382 (2015).
    • 64. Wang P, Wu Q, Han L et al. Synthesis of conjugated covalent organic frameworks/graphene composite for supercapacitor electrodes. RSC Adv. 5(35), 27290–27294 (2015).
    • 65. Sun B, Li J, Dong W-L, Wu M-L, Wang D. Selective growth of covalent organic framework ultrathin films on hexagonal boron nitride. J. Phys. Chem. C 120(27), 14706–14711 (2016).
    • 66. Wang P, Kang M, Sun S, Liu Q, Zhang Z, Fang S. Imine-linked covalent organic framework on surface for biosensor. Chin. J. Chem. 32(9), 838–843 (2014).
    • 67. Colson JW, Woll AR, Mukherjee A et al. Oriented 2D covalent organic framework thin films on single-layer graphene. Science 332(6026), 228–231 (2011).
    • 68. Colson JW, Mann JA, DeBlase CR, Dichtel WR. Patterned growth of oriented 2D covalent organic framework thin films on single-layer graphene. J. Polym. Sci. A Polym. Chem. 53(2), 378–384 (2015).
    • 69. Seo W, White DL, Star A. Fabrication of holey graphene: catalytic oxidation by metalloporphyrin-based covalent organic framework immobilized on highly ordered pyrolytic graphite. Chem. A Eur. J. 23(24), 5652–5657 (2017).
    • 70. Xu L, Zhou X, Tian WQ et al. Surface-confined single-layer covalent organic framework on single-layer graphene grown on copper foil. Angew. Chem. Int. Ed. Engl. 53(36), 9564–9568 (2014).
    • 71. Sun B, Liu J, Cao A, Song W, Wang D. Interfacial synthesis of ordered and stable covalent organic frameworks on amino-functionalized carbon nanotubes with enhanced electrochemical performance. Chem. Commun. 53(47), 6303–6306 (2017).
    • 72. Deng Y, Wang Y, Xiao X et al. Progress in hybridization of covalent organic frameworks and metal–organic frameworks. Small 18(38), 2202928 (2022).
    • 73. Dong J, Han X, Liu Y, Li H, Cui Y. Metal–covalent organic frameworks (MCOFs), a bridge between metal–organic frameworks and covalent organic frameworks. Angew. Chem. Int. Ed. Engl. 59(33), 13722–13733 (2020).
    • 74. Peng Y, Zhao M, Chen B et al. Hybridization of MOFs and COFs: a new strategy for construction of MOF@ COF core–shell hybrid materials. Adv. Mater. 30(3), 1705454 (2018).
    • 75. Cai M, Li Y, Liu Q et al. Erratum: one-step construction of hydrophobic MOFs@ COFs core-shell composites for heterogeneous selective catalysis. Adv. Sci. (Weinheim) 7(20), 2003385 (2020).
    • 76. Gao M-Y, Li C-C, Tang H-L, Sun X-J, Dong H, Zhang F-M. Boosting visible-light-driven hydrogen evolution of covalent organic frameworks through compositing with MoS2: a promising candidate for noble-metal-free photocatalysts. J. Mater. Chem. A 7(35), 20193–20200 (2019).
    • 77. He S, Rong Q, Niu H, Cai Y. Platform for molecular-material dual regulation: A direct Z-scheme MOF/COF heterojunction with enhanced visible-light photocatalytic activity. Appl. Catal. B Environ. 247, 49–56 (2019).
    • 78. Nguyen HL, Gándara F, Furukawa H, Doan TL, Cordova KE, Yaghi OM. A titanium–organic framework as an exemplar of combining the chemistry of metal– and covalent–organic frameworks. J. Am. Chem. Soc. 138(13), 4330–4333 (2016).
    • 79. Cai M, Li Y, Liu Q et al. One-step construction of hydrophobic MOFs@ COFs core–shell composites for heterogeneous selective catalysis. Adv. Sci. 6(8), 1802365 (2019).
    • 80. Lu G, Huang X, Li Y, Zhao G, Pang G, Wang G. Covalently integrated core-shell MOF@ COF hybrids as efficient visible-light-driven photocatalysts for selective oxidation of alcohols. J. Energy Chem. 43, 8–15 (2020).
    • 81. Zhang FM, Sheng JL, Yang ZD et al. Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew. Chem. Int. Ed. Engl. 57(37), 12106–12110 (2018).
    • 82. Li F, Wang D, Xing Q-J et al. Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modification: an efficient strategy to boost the visible-light-driven photocatalytic performance. Appl. Catal. B Environ. 243, 621–628 (2019).
    • 83. Felipe G, Hiroyasu F, Doan TLH. A titanium–organic framework as an exemplar of combining the chemistry of metal–and covalent–organic frameworks. J. Am. Chem. Soc. 138, 4330–4333 (2016).
    • 84. Ahmad M, Luo Y, Wöll C, Tsotsalas M, Schug A. Design of metal-organic framework templated materials using high-throughput computational screening. Molecules 25(21), 4875 (2020).
    • 85. Han X, Huang J, Yuan C, Liu Y, Cui Y. Chiral 3D covalent organic frameworks for high performance liquid chromatographic enantioseparation. J. Am. Chem. Soc. 140(3), 892–895 (2018).
    • 86. Qian H-L, Yang C-X, Yan X-P. Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation. Nat. Commun. 7(1), 12104 (2016).
    • 87. Guo P, Yuan B-Y, Yu Y-Y et al. Chiral covalent organic framework core-shell composite CTpBD@ SiO2 used as stationary phase for HPLC enantioseparation. Microchim. Acta 188, 1–10 (2021).
    • 88. Yang J, Huang L, You J, Yamauchi Y. Magnetic covalent organic framework composites for wastewater remediation. Small 19(37), 2301044 (2023).
    • 89. Lino MA, Lino AA, Mazzoni MS. Porous nanotubes and fullerenes based on covalent organic frameworks. Chem.Phys. Lett. 449(1–3), 171–174 (2007).
    • 90. Babarao R, Jiang J. Exceptionally high CO2 storage in covalent-organic frameworks: atomistic simulation study. Energy Environ. Sci. 1(1), 139–143 (2008).
    • 91. Han SS, Furukawa H, Yaghi OM, Goddard WA III. Covalent organic frameworks as exceptional hydrogen storage materials. J. Am. Chem. Soc. 130(35), 11580–11581 (2008).
    • 92. Doonan CJ, Tranchemontagne DJ, Glover TG, Hunt JR, Yaghi OM. Exceptional ammonia uptake by a covalent organic framework. Nat. Chem. 2(3), 235–238 (2010).
    • 93. Ding S-Y, Gao J, Wang Q et al. Construction of covalent organic framework for catalysis: pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. J. Am. Chem. Soc. 133(49), 19816–19822 (2011).
    • 94. Wan S, Guo J, Kim J, Ihee H, Jiang D. A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation. Angew. Chem. Int. Ed. Engl. 48(30), 5439–5442 (2009).
    • 95. Lin G, Ding H, Yuan D, Wang B, Wang C. A pyrene-based, fluorescent three-dimensional covalent organic framework. J. Am. Chem. Soc. 138(10), 3302–3305 (2016).
    • 96. Banerjee T, Gottschling K, Savasci G, Ochsenfeld C, Lotsch BV. H2 evolution with covalent organic framework photocatalysts. ACS Energy Lett. 3(2), 400–409 (2018).
    • 97. Sun Q, Aguila B, Perman J et al. Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal. J. Am. Chem. Soc. 139(7), 2786–2793 (2017).
    • 98. Sun Q, Aguila B, Earl LD et al. Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration. Adv. Mater. 30(20), 1705479 (2018).
    • 99. Lin Y, Jiang X, Kim ST et al. An elastic hydrogen-bonded cross-linked organic framework for effective iodine capture in water. J. Am. Chem. Soc. 139(21), 7172–7175 (2017).
    • 100. Da H-J, Yang C-X, Yan X-P. Cationic covalent organic nanosheets for rapid and selective capture of perrhenate: an analogue of radioactive pertechnetate from aqueous solution. Environ. Sci. Technol. 53(9), 5212–5220 (2019).
    • 101. Lu Q, Ma Y, Li H et al. Postsynthetic functionalization of three-dimensional covalent organic frameworks for selective extraction of lanthanide ions. Angew. Chem. 130(21), 6150–6156 (2018).
    • 102. Zhu X, An S, Liu Y et al. Efficient removal of organic dye pollutants using covalent organic frameworks. AIChE J. 63(8), 3470–3478 (2017).
    • 103. Bagheri AR, Aramesh N, Sher F, Bilal M. Covalent organic frameworks as robust materials for mitigation of environmental pollutants. Chemosphere 270, 129523 (2021). •• Focuses on the evolutionary application of advanced COFs in environmental pollutant (dyes, organic pollutants and metals) separation.
    • 104. Zhuang S, Cheng R, Wang J. Adsorption of diclofenac from aqueous solution using UiO-66-type metal-organic frameworks. Chem. Eng. J. 359, 354–362 (2019).
    • 105. El-Kaderi HM, Hunt JR, Mendoza-Cortés JL et al. Designed synthesis of 3D covalent organic frameworks. Science 316(5822), 268–272 (2007).
    • 106. Lan Y, Tong M, Yang Q, Zhong C. Computational screening of covalent organic frameworks for the capture of radioactive iodine and methyl iodide. CrystEngComm 19(33), 4920–4926 (2017).
    • 107. Wang R, Shi X, Xiao A, Zhou W, Wang Y. Interfacial polymerization of covalent organic frameworks (COFs) on polymeric substrates for molecular separations. J. Membr. Sci. 566, 197–204 (2018).
    • 108. Shan M, Seoane B, Rozhko E et al. Azine-linked covalent organic framework (COF)-based mixed-matrix membranes for CO2/CH4 Separation. Chem. A Eur. J. 22(41), 14467–14470 (2016).
    • 109. Dalapati S, Jin E, Addicoat M, Heine T, Jiang D. Highly emissive covalent organic frameworks. J. Am. Chem. Soc. 138(18), 5797–5800 (2016).
    • 110. Li Z, Huang N, Lee KH et al. Light-emitting covalent organic frameworks: fluorescence improving via pinpoint surgery and selective switch-on sensing of anions. J. Am. Chem. Soc. 140(39), 12374–12377 (2018).
    • 111. Das G, Biswal BP, Kandambeth S et al. Chemical sensing in two dimensional porous covalent organic nanosheets. Chem. Sci. 6(7), 3931–3939 (2015).
    • 112. Wang M, Hu M, Liu J et al. Covalent organic framework-based electrochemical aptasensors for the ultrasensitive detection of antibiotics. Biosens. Bioelectron. 132, 8–16 (2019).
    • 113. Banerjee T, Haase F, Savasci G, Gottschling K, Ochsenfeld C, Lotsch BV. Single-site photocatalytic H2 evolution from covalent organic frameworks with molecular cobaloxime co-catalysts. J. Am. Chem. Soc. 139(45), 16228–16234 (2017).
    • 114. Lv H, Zhao X, Niu H et al. Ball milling synthesis of covalent organic framework as a highly active photocatalyst for degradation of organic contaminants. J. Hazard. Mater. 369, 494–502 (2019).
    • 115. Yang J, Wu Y, Wu X, Liu W, Wang Y, Wang J. An N-heterocyclic carbene-functionalised covalent organic framework with atomically dispersed palladium for coupling reactions under mild conditions. Green Chem. 21(19), 5267–5273 (2019).
    • 116. Liu J, Zong E, Fu H, Zheng S, Xu Z, Zhu D. Adsorption of aromatic compounds on porous covalent triazine-based framework. J. Colloid Interface Sci. 372(1), 99–107 (2012).
    • 117. Zhong C, He M, Liao H, Chen B, Wang C, Hu B. Polydimethylsiloxane/covalent triazine frameworks coated stir bar sorptive extraction coupled with high performance liquid chromatography-ultraviolet detection for the determination of phenols in environmental water samples. J. Chromatogr. A 1441, 8–15 (2016).
    • 118. Liu J-M, Wang X-Z, Zhao C-Y, Hao J-L, Fang G-Z, Wang S. Fabrication of porous covalent organic frameworks as selective and advanced adsorbents for the on-line preconcentration of trace elements against the complex sample matrix. J. Hazard. Mater. 344, 220–229 (2018).
    • 119. Ma Y-F, Yuan F, Zhang X-H, Zhou Y-L, Zhang X-X. Highly efficient enrichment of N-linked glycopeptides using a hydrophilic covalent-organic framework. Analyst 142(17), 3212–3218 (2017).
    • 120. Wang H, Jiao F, Gao F et al. Titanium (IV) ion-modified covalent organic frameworks for specific enrichment of phosphopeptides. Talanta 166, 133–140 (2017).
    • 121. Li Y, Yang C-X, Yan X-P. Controllable preparation of core–shell magnetic covalent-organic framework nanospheres for efficient adsorption and removal of bisphenols in aqueous solution. Chem. Commun. 53(16), 2511–2514 (2017).
    • 122. Yan Z, He M, Chen B, Gui B, Wang C, Hu B. Magnetic covalent triazine framework for rapid extraction of phthalate esters in plastic packaging materials followed by gas chromatography-flame ionization detection. J. Chromatogr. A 1525, 32–41 (2017).
    • 123. Lin G, Gao C, Zheng Q et al. Room-temperature synthesis of core–shell structured magnetic covalent organic frameworks for efficient enrichment of peptides and simultaneous exclusion of proteins. Chem. Commun. 53(26), 3649–3652 (2017).
    • 124. He S, Zeng T, Wang S, Niu H, Cai Y. Facile synthesis of magnetic covalent organic framework with three-dimensional bouquet-like structure for enhanced extraction of organic targets. ACS Appl. Mater. Interfaces 9(3), 2959–2965 (2017).
    • 125. Wu M, Chen G, Liu P, Zhou W, Jia Q. Polydopamine-based immobilization of a hydrazone covalent organic framework for headspace solid-phase microextraction of pyrethroids in vegetables and fruits. J. Chromatogr. A 1456, 34–41 (2016).
    • 126. Wu M, Chen G, Ma J, Liu P, Jia Q. Fabrication of cross-linked hydrazone covalent organic frameworks by click chemistry and application to solid phase microextraction. Talanta 161, 350–358 (2016).
    • 127. Yang C-X, Liu C, Cao Y-M, Yan X-P. Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation. Chem. Commun. 51(61), 12254–12257 (2015).
    • 128. Han X, Xia Q, Huang J, Liu Y, Tan C, Cui Y. Chiral covalent organic frameworks with high chemical stability for heterogeneous asymmetric catalysis. J. Am. Chem. Soc. 139(25), 8693–8697 (2017).
    • 129. Wang LL, Yang CX, Yan XP. In situ growth of covalent organic framework shells on silica microspheres for application in liquid chromatography. ChemPlusChem 82(6), 933–938 (2017).
    • 130. Zhao W, Hu K, Hu C, Wang X, Yu A, Zhang S. Silica gel microspheres decorated with covalent triazine-based frameworks as an improved stationary phase for high performance liquid chromatography. J. Chromatogr. A 1487, 83–88 (2017).
    • 131. Liu L-H, Yang C-X, Yan X-P. Methacrylate-bonded covalent-organic framework monolithic columns for high performance liquid chromatography. J. Chromatogr. A 1479, 137–144 (2017).
    • 132. Liu G, Sheng J, Zhao Y. Chiral covalent organic frameworks for asymmetric catalysis and chiral separation. Sci. Chin. Chem. 60, 1015–1022 (2017).
    • 133. Wang Y, Zhuo S, Hou J, Li W, Ji Y. Construction of β-cyclodextrin covalent organic framework-modified chiral stationary phase for chiral separation. ACS Appl. Mater. Interfaces 11(51), 48363–48369 (2019).
    • 134. Niu X, Ding S, Wang W et al. Separation of small organic molecules using covalent organic frameworks-LZU1 as stationary phase by open-tubular capillary electrochromatography. J. Chromatogr. A 1436, 109–117 (2016).
    • 135. Kong D, Bao T, Chen Z. In situ synthesis of the imine-based covalent organic framework LZU1 on the inner walls of capillaries for electrochromatographic separation of nonsteroidal drugs and amino acids. Microchim. Acta 184, 1169–1176 (2017).
    • 136. Guan X, Chen F, Fang Q, Qiu S. Design and applications of three dimensional covalent organic frameworks. Chem. Soc. Rev. 49(5), 1357–1384 (2020).
    • 137. Bai L, Phua SZF, Lim WQ et al. Nanoscale covalent organic frameworks as smart carriers for drug delivery. Chem. Commun. 52(22), 4128–4131 (2016).
    • 138. Fang Q, Wang J, Gu S et al. 3D porous crystalline polyimide covalent organic frameworks for drug delivery. J. Am. Chem. Soc. 137(26), 8352–8355 (2015).
    • 139. Akyuz L. An imine based COF as a smart carrier for targeted drug delivery: from synthesis to computational studies. Microporous Mesoporous Mater. 294, 109850 (2020).
    • 140. Bhanja P, Mishra S, Manna K, Mallick A, Das Saha K, Bhaumik A. Covalent organic framework material bearing phloroglucinol building units as a potent anticancer agent. ACS Appl. Mater. Interfaces 9(37), 31411–31423 (2017).
    • 141. Anbazhagan R, Krishnamoorthi R, Kumaresan S, Tsai H-C. Thioether-terminated triazole-bridged covalent organic framework for dual-sensitive drug delivery application. Mater. Sci. Eng. C 120, 111704 (2021).
    • 142. Jia Y, Zhang L, He B, Lin Y, Wang J, Li M. 8-Hydroxyquinoline functionalized covalent organic framework as a pH sensitive carrier for drug delivery. Mater. Sci. Eng. C 117, 111243 (2020).
    • 143. Adalikwu SA, Louis H, Iloanya AC et al. B- and Al-doped porous 2D covalent organic frameworks as nanocarriers for biguanides and metformin drugs. ACS Appl. Bio Mater. 5(12), 5887–5900 (2022).
    • 144. Kommalapati HS, Pilli P, Samanthula G. Green sample preparation in bioanalysis: where are we now? Bio analysis 15(7), 363–366 (2023).
    • 145. Aksu GO, Daglar H, Altintas C, Keskin S. Computational selection of high-performing covalent organic frameworks for adsorption and membrane-based CO2/H2 separation. J. Phys. Chem. C 124(41), 22577–22590 (2020).
    • 146. Kommalapati HS, Pilli P, Golla VM, Bhatt N, Samanthula G. In silico tools to thaw the complexity of the data: revolutionizing drug research in drug metabolism, pharmacokinetics and toxicity prediction. Curr. Drug Metab. 24(11), 735–755 (2023).
    • 147. Gülçay E, Findikci İE. Computational screening of covalent organic frameworks for hydrogen storage. J. Turk. Chem. Soc. A Chem. 7(1), 65–76 (2020). • Computational tools for screening and characterizing multiple COFs with detailed specifications and applicability.
    • 148. Altundal OF, Altintas C, Keskin S. Can COFs replace MOFs in flue gas separation? High-throughput computational screening of COFs for CO2/N2 separation. J. Mater. Chem. A 8(29), 14609–14623 (2020).
    • 149. Feng M, Cheng M, Deng J et al. High-throughput computational screening of covalent-organic framework membranes for helium purification. Res. Eng. 15, 100538 (2022).
    • 150. Segura JL, Royuela S, Ramos MM. Post-synthetic modification of covalent organic frameworks. Chem. Soc. Rev. 48(14), 3903–3945 (2019).
    • 151. Gulbalkan HC, Haslak ZP, Altintas C, Uzun A, Keskin S. Multi-scale computational screening to accelerate discovery of IL/COF composites for CO2/N2 separation. Sep. Purif. Technol. 287, 120578 (2022).
    • 152. Xue W, Li Z, Huang H et al. Effects of ionic liquid dispersion in metal-organic frameworks and covalent organic frameworks on CO2 capture: a computational study. Chem. Eng. Sci. 140, 1–9 (2016).
    • 153. Marchetti P, Jimenez Solomon MF, Szekely G, Livingston AG. Molecular separation with organic solvent nanofiltration: a critical review. Chem. Rev. 114(21), 10735–10806 (2014).
    • 154. Wei W, Liu J, Jiang J. Computational design of 2D covalent-organic framework membranes for organic solvent nanofiltration. ACS Sustain. Chem. Eng. 7(1), 1734–1744 (2018).