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Aim: Enhancing the structure-activity relationship matrix (SARM) methodology through integration of
deep learning and expansion of chemical space coverage. Background: Analog design is of critical impor-
tance for medicinal chemistry. The SARM approach, which combines systematic structural organization
of compound series with analog design, is put into scientific context. Methodology: The new DeepSARM
concept is introduced. The architecture of SARM-integrated deep generative models is detailed and the
workflow for advanced analog design and matrix expansion described. Exemplary application: The Deep-
SARM approach is applied to design analogs of kinase inhibitors taking kinome-wide chemical space into
account. Future perspective: Practical applications of DeepSARM will be a major focal point. Different
applications are discussed. New computational features will be added to prioritize virtual candidate com-
pounds.

Lay abstract: Compound optimization in medicinal chemistry depends on the design of new candidate
molecules to improve biological activity and chemical properties. These molecules are usually structurally
closely related to current leads and hence termed as analogs. Computational methods can support the de-
sign of analogs. The structure-activity relationship matrix (SARM) method systematically organizes series
of compounds and suggests new analogs. The SARM approach has been extended through integration of
machine learning. The resulting DeepSARM method further increases the coverage of biologically relevant
chemical space with novel analogs.
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Compound optimization and development in medicinal chemistry relies on the generation of analogs of molecules
having desired biological activity and other attractive features [1,2]. During hit-to-lead transformation and lead
optimization (LO), medicinal chemists concentrate on the question which analogs to make next in order to explore
and further evolve structure—activity relationships (SARs), improve compound potency and optimize other LO
relevant molecular properties. LO efforts continue to evolve until compound series eventually hit insuperable
roadblocks and must be abandoned or until the stage of clinical candidates is ultimately reached. In the practice of
medicinal chemistry, analogs are mostly generated on the basis of chemical experience and intuition. This process is
often perceived more as a form of science-driven art than a rigorous scientific exercise [2]. Given the central relevance
of analog design for medicinal chemistry, it is not surprising that approaches capable of guiding and rationalizing
analog generation are highly sought after. This explains the interest in computational methods for analog searching
and design. In addition to conventional quantitative SAR methods for compound potency prediction, popular
approaches for analog generation include scaffold and fragment searching, matched molecular pair (MMP) analysis,
screening of large virtual libraries and computational analog design [3-10].

Among approaches for computational analog design, the SAR matrix (SARM) methodology is unique in that it
combines the systematic extraction of analog series from compound collections with the generation of new virtual
candidate compounds [10). The SARM approach organizes related compound series in multiple matrices that are
akin to, but conceptually distinct from standard R-group tables. The generation of these SARMs is based upon a
systematic two-level fragmentation scheme to extract all core structures and substituents from available compounds,
identify analog series and organize them into subsets of structurally related ones. Each individual SARM contains
such a subset. In addition to existing analogs comprising a series, SARMs also contain all possible nonexplored core—
substituent combinations, which represent virtual analogs for further exploration. These candidate compounds map
analog space around related series on the basis of existing structural fragments that are systematically recombined.
Hence, virtual analogs from SARMs can be envisioned to form an envelope around a given series in chemical space.
The SARM approach has been successfully used in hit-to-lead projects to identify new active analogs and other
practical applications [11,12]. To aid in prioritizing and selecting candidate compounds, the methodology has been
extended through incorporation of local matrix-based quantitative SAR modeling [13], addition of molecular grid
maps for integrated SARM display [14] and implementation of systematic analog searching in very large databases
of SARMs [15].

A characteristic feature of the SARM approach is that the newly generated analog space around a given series
is confined to recombination of existing structural fragments originating from the series. Thus, as a further
improvement of the methodology, accessible analog space might be extended by generating candidate compounds
with novel structural features. For example, this might be attempted by taking information from compounds active
against related targets into account to obtain new structural fragments. While a systematic exploration of such
information principally represents a nontrivial task, deep learning approaches, which are becoming increasingly
popular in drug discovery and chemistry [16,17], offer potential solutions. Herein, we report a new concept for analog
generation and the design, implementation and application of dedicated deep generative learning architectures to
further increase the SAR information content and chemical space coverage of SARM-based analogs by taking
compound information from target families into account.

Methodology

Methodological concept

DeepSARM was designed to expand the chemical space coverage of original SARMs using deep learning models

for compound design. The concept of DeepSARM is illustrated in Figure 1, using kinase inhibitors as an example.
The key aspect of the approach is complementing analog design for a given set of active compounds (e.g., in-

hibitors of Aurora A kinase) through learning from compound information for related targets (e.g., inhibitors

covering the human kinome), followed by fine-tuning of the design for the target of interest.
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Figure 1. Methodological concept of DeepSAR matrix. SARMs are expanded through the use of deep generative models taking chemical
space information from target families into account. As an example, the SARM method is applied to structurally organize Aurora A kinase
inhibitors and generate close-in virtual analogs. In this case, the Kinase SARfari database is used to represent chemical space of kinase
inhibitors covering the human kinome. DeepSARM generates additional candidate inhibitors through deep generative models taking
information from SARMs and Kinase SARfari into account.

SARM: Structure-activity relationship matrix.

Through generative learning using deep molecular encoder—decoder models, expanded SARMs are constructed,
which contain not only fragments from original SARMs, but also novel fragments obtained by target-directed
learning from related compound information. Importantly, the newly derived predictive models enable learning
from such compound information with a focus on individual targets and compatible structural fragments, as
detailed below.

Hence, the DeepSARM concept can be rationalized as a data-driven expansion of confined analog space around
compound series of interest.

Construction of SARM index tables

The methodology for constructing SARMs has been detailed previously (10,11,15] and is briefly summarized here
using a small set of nine exemplary molecules, shown in Figure 2A. SARMs are generated through systematic two-
level MMP fragmentation [6,7l. An MMP is defined as a pair of compounds that only differ by a chemical change
at a single site [6]. Two-level fragmentation is unique to the SARM approach. In the first step, all compounds are
subjected to MMP fragmentation of exocyclic single bonds by application of the Hussain—Rea algorithm (7], which
produces key (core structure) and smaller value (substituent, R-group) fragments. A first index table is generated
from key and value fragments obtained from original compounds, as shown in Figure 2B. All compounds that are
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Figure 2. Structure-activity relationship matrix data structure. (A) Shown is a small model dataset for structure-activity relationship
matrix (SARM) generation with nine compounds (CPD A-l). (B) Compound fragmentation through systematic deletion of exocyclic single
bonds yields two types of fragments that are stored in the first index table. These fragments are termed key and value, respectively,
following matched molecular pair terminology. Compounds containing the same key and different values form a MMS. (C) Structurally
analogous cores are identified by subjecting all keys from the first index table to a second round of systematic bond fragmentation. Sets
of structurally analogous cores form key MMSs and are stored in the second index table. (D) For each key MMS, an SARM is constructed by
placing the keys in the leftmost column (y-axis of the SARM) and each value (from the first index table) from compounds forming the
associated MMS in the corresponding row (x-axis). The empty cell in the SARM at the top represents a virtual analog (i.e., a currently

unexplored key-value combination).
Adapted with permission from [15].
MMS: Matching molecular series.

associated with the same key fragment in the first index table form a matching molecular series (MMS), which is
defined as a series of compounds that only differ by structural changes at a single site [18], hence representing an
extension of the MMP concept.

Key fragments from the first index table are then subjected to a second fragmentation process. As illustrated in
Figure 2C, a second index table is generated with the resulting fragments. All key fragments in the second index table
represent core structures that are only distinguished by a modification at a single site. These structurally analogous
cores form a so-called key MMS. Analog series (i.e., rows in the second index table) containing structurally related
cores are then organized in individual SARMs, as shown in Figure 2D. In an SARM, each row contains an individual
analog series and each column compounds from different series sharing the same substituent. Hence, each cell in an
SARM represents a unique compound and an empty cell represents a virtual analog, in other words, a currently not
yet explored key—value combination. Accordingly, SARMs comprehensively extract structural relationships from
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compound datasets, organize compounds into structurally related series and generate virtual analogs from possible
combinations of core structures and substituents, thereby expanding chemical space around a given set with newly
designed compounds.

Molecular representations

All compound structures were converted into canonical simplified molecular input line entry specification (SMILES)
strings [19] using RDKit software [20]. For generative learning, SMILES are vectorized to one-hot encoded represen-
tations [21]. Initially, SMILES are tokenized based on a single character or multiple characters. The single character
indicates atom types (e.g., ‘C’, °©), bond types (e.g., -, ‘=" and ‘#) and ring closures (e.g., ‘1’ and 2’). Two
characters denote other atom types (e.g., ‘ClI" and ‘Br’) and special environments are defined using square brackets
(e.g., ‘[nH] and [*:1]). Furthermore, start and stop tokens (‘[START] and ‘[ENDYJ’, respectively) are added.

Following tokenization, SMILES are transformed into one-hot encoded (binarized) representations.

Generative models
Architecture

Sequence-to-sequence (Seq2Seq) models represent a general-purpose encoder—decoder framework to translate one
data sequence into another [22]. These models have been successfully applied in areas such as machine translation,
text processing or image analysis [22]. Figure 3A illustrates a Seq2Seq encoder—decoder architecture that consists of
two long short-term memory (LSTM) units [23]. This architecture represents a deep recurrent neural network [21]
and is used to generate different Seq2Seq models. The encoder LSTM transforms input sequences into two-state
vectors (h, ¢), and the decoder LSTM is trained to return the same sequences as target sequences on the basis
of transformed SMILES. As an initial state, the decoder uses two state vectors from the encoder. The latent
dimensionality of the encoding space of the LSTM is set here to 256.

Model derivation

Key and value designations for fragments used in the following are standard terminology of the MMP (7] and
SARM [10] methodologies.
To generate expanded SARMs, three Seq2Seq models are trained as follows:

Model (key 2) using key 2 (input)/key 2 (target) pairs (with the same SMILES);

Model (value 2) using key 2 (input) /value 2 (target) pairs (from key MMSs);

Model (value 1) using key 1 (input)/value 1 (target) pairs (from MMSs). Training Seq2Seq models for the
generation of expanded SARMs consists of the following steps that are summarized in Figure 3B: pretraining
using large numbers of structures from a given target family or class, construction of the first and second
index tables and fine-tuning of the model on the basis of compounds active against a target of interest from
the family or class. Retraining involves the adjustment of internal model weights.

For training, the number of epochs is set to 5, batch size is set to 64 and the compound datasets are divided into
training and validation sets (9:1).

Scripts for model derivation were written in Python (version 3.7.3), and the Seq2Seq models were built with
Keras (version 2.2.4) [24].

Fragment sampling

The trained Seq2Seq models generate fragments for key 2, value 2 and value 1 on the basis of SMILES strings.
The fragment sampling procedure consists of the following steps: a fragment is submitted to the encoder and the
resulting state vectors (h, ¢) are sent to the decoder, which uses them as initial states for the [START] token.
The process is repeated until the decoder replies with an ‘[END]’ token. Multinomial sampling on the probability
distribution is applied and rescaled using temperature factors for each token as available in Keras [24]. Temperature
factors for the key 2, value 2 and value 1 generator are set to 1.5, 1.5 and 1.2, respectively.

Methodology
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Figure 3. Model derivation and DeepSARM workflow. (A) Three sequence-to-sequence (Seq2Seq) models consisting of encoder-decoder
long short-term memory units are derived. The Seq2Seq model for key 2 (i.e., the key 2 generator) is trained using input key 2/output key
2 pairs (with the same SMILES), the model for value 2 using key 2/value 2 pairs (from key matching molecular series; MMS), and the
model for value 1 using key 1/value 1 pairs (from MMSs). Attachment points are indicated ‘*1’, '*2" and 'At’. ‘*1’, **2" in input SMILES
correspond to ‘*1’, “*2' in output SMILES. (B) Seq2Seq models are first trained using fragments from large numbers of structures of a
given target family or class (pretraining step) and then fine-tuned using corresponding fragments from compounds active against an
individual target from that class. During retraining transferred model weights are further adjusted. (C) A new compound (CPD D) is
assembled from fragments. Each Seq2Seq model generates a variety of fragments for structure-activity relationship matrix expansion
that are prioritized on the basis of log_likelihood scores. Only one example is shown here. (D) Compounds comprising newly generated
key fragments are added and systematically organized in the expanded structure-activity relationship matrix.

LSTM: Long short-term memory.

Future Drug. Discov. (2020) 2(2) future science group




Deep generative models for SARM expansion ~ Methodology

LSTM
(encoder)

(decoder) filter

construction (encoder)

SARM
expansion

LSTM Value 1
(decoder) filter Value 1s

".w

874 045 054

B B |
o

Key 1s

Figure 3. Model derivation and DeepSARM workflow (cont.). (A) Three sequence-to-sequence (Seq2Seq) models consisting of
encoder—decoder long short-term memory units are derived. The Seq2Seq model for key 2 (i.e., the key 2 generator) is trained using input
key 2/output key 2 pairs (with the same SMILES), the model for value 2 using key 2/value 2 pairs (from key matching molecular series;
MMS), and the model for value 1 using key 1/value 1 pairs (from MMSs). Attachment points are indicated ‘*1’, ‘*2" and ‘At". "*1’, '*2" in
input SMILES correspond to ‘*1’, ‘*2" in output SMILES. (B) Seq2Seq models are first trained using fragments from large numbers of
structures of a given target family or class (pretraining step) and then fine-tuned using corresponding fragments from compounds active
against an individual target from that class. During retraining transferred model weights are further adjusted. (C) A new compound (CPD
D) is assembled from fragments. Each Seq2Seq model generates a variety of fragments for structure-activity relationship matrix
expansion that are prioritized on the basis of log_likelihood scores. Only one example is shown here. (D) Compounds comprising newly
generated key fragments are added and systematically organized in the expanded structure-activity relationship matrix.

LSTM: Long short-term memory.
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Fragment scoring

Generated fragments are evaluated on the basis of a log_likelihood score defined as:

T
log_likelihood score = — Z log P (x’|x’71, e, xl)

r=1

where P is a probability distribution of a decoder in the model and 7 the number of tokens for a fragment. The
score is used as a threshold value for filtering new key 2, value 2 and value 1 fragments. The minus sign effectuates
that high probabilities yield small scores for fragment prioritization.

Compound generation

Figure 3C illustrates how new compounds are generated using sampled fragments. Key 2 is generated from input
key 2 fragments using the first Seq2Seq model (key 2 generator). Value 2 is generated from key 2 using the second
model (value 2 generator). Then, key 1 is assembled from key 2 and value 2. Value 1 is generated from key 1 using
the third Seq2Seq model (value 1 generator). Finally, a new compound D is obtained by combining key 1 and
value 1.

SARM expansion
The workflow for expansion of SARMs is summarized in Figure 3D. New fragments are derived and filtered by
log_likelihood score (applying a threshold value of 10 for key 2 and value 2, respectively, and a value of 5 for value
1). The log_likelihood score of a new compound is obtained by adding the individual scores of its fragments. When
compounds are added to an SARM, unique key 1 fragments are placed on the vertical axis and value 1 fragment of
the horizontal axis, resulting in new key—value combinations across the expanded SARM and new virtual analogs.
We note that the primary application scenario of the DeepSARM approach is the expansion of structurally
related analog series. The approach is readily scalable to series of increasing size as well as larger datasets. It is also

applicable, for example, in the context of Mega SARM [15].

Exemplary application

Compound data

As an exemplary application, the DeepSARM methodology was applied to expand SARMs of human Aurora A
kinase inhibitors. Therefore, a set of 43 Aurora A kinase inhibitors (in the following referred to as Aurora inhibitors)
was taken from ChEMBL (id: CHEMBL1158437) [25]. In addition, inhibitors of other human kinases and their
activity data were obtained from the public Kinase SARfari collection [26]. Compound entries were filtered to
remove salts and other auxiliary molecules and select structures with molecular weight of 350—-500 Da, resulting in
27,778 unique kinase inhibitors.

SARMs of Aurora inhibitors

For the set of 43 Aurora inhibitors, an ensemble of 69 SARMs with dimensionality equal to or greater than 2 x 2
were obtained. Figure 4 illustrates the generation of one of these SARM. Figure 4A shows exemplary inhibitors and
Figure 4B shows value 2 and value 1 fragments from the set of Aurora inhibitors for a given a key 2. Figure 4C
shows the resulting SARM that contains 13 of 43 Aurora inhibitors (green cells) and 35 virtual analogs (empty
cells).

Expanded SARMs

Generation of new fragments using DeepSARM can complement existing SARMs with additional compounds or
result in new SARMs that exclusively consist of new virtual analogs, depending on the structural relationships that
are formed between compounds from original SARMs and newly generated molecules.

Combining existing & new fragments
Figure 5 provides an example for DeepSARM expansion leading to SARM:s incorporating new fragments. Figure SA

shows key 2 structures produced by the key 2 generator on the basis of the input key 2 fragments from Figure 4B.
The key 2 generator yielded 90 valid SMILES in 100 random trials. After removing duplicated SMILES, 13 unique
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Figure 4. Exemplary structure-activity relationship matrix. (A) Six exemplary compounds from a set of 43 Aurora A kinase inhibitors
used to generate structure—activity relationship matrices (SARMs) are shown. (B) Exemplary key 2, value 2 and value 1 fragments are
depicted. ‘Value 2 (key 1)’ means ‘value 2 for key 1 generation’ and indicates that key 1 fragments are assembled from key 2 and value 2
fragments. Numbers are fragment identifiers (ID). (C) An exemplary SARM is assembled from fragments in (B) that contains 13 known
inhibitors. ‘Key 2-1' refers to the key 2 fragment with ID 1. Fragments contained in SARMs are labeled ‘s’ (e.g., value 1s).
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Figure 5. Exemplary DeepSARM expansion. (A) Shows key 2 fragments constructed with the key 2 generator based on input key 2-1

from Figure 4B. Key 2 structures on a green background are contained in original structure-activity relationship matrices (SARMs) of the
set of Aurora A kinase inhibitors while key 2 structures on a blue background are novel. Numbers are fragment identifiers (ID) and
numbers in parentheses report log_likelihood scores. (B) Shown are value 2 and value 1 fragments generated with DeepSARM on the
basis of the SARM in Figure 4C. (C) The expanded SARM is displayed. Each cell in the SARM represents a unique compound and is
color-coded by log_likelihood scores.

structures were obtained, including key 2 fragments from the original SARM as well as novel key 2 structures.

Figure 5B shows value 2 and value 1 fragments generated using DeepSARM based on the SARM in Figure 4C. The
value 2 generator produced 97 valid SMILES in 100 random trials, including 14 unique structures. In addition, 14
key 1 fragments were obtained from the 14 value 2 fragments and key 2-1. The value 1 generator then produced 32
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unique structures in 10 random trials with each key 1. Figure 5C shows the expanded SARM. The SARM is color
coded by log_likelihood scores. Cells with horizontal black bars contain the 13 compounds from the original SARM
(Figure 4C). Most value 2 and value 1 fragments from the original SARM have low log_likelihood score (Figure 5B),
indicating that DeepSARM learns structural information from Aurora inhibitors effectively. Novel value 2 and
value 1 fragments are generated from other kinase inhibitors (originating from SARfari). Novel fragments with
low log_likelihood score are located close to fragments from the original SARM in latent space of the decoder.
Accordingly, as a results of fine-tuning, DeepSARM suggests novel fragments that are related to yet distinct from
fragments in the original SARM.

Generating new SARMs

DeepSARM expansion may also result in the formation of new SARMs exclusively containing novel fragments and
analogs. Figure 6 shows a representative example. In Figure 6A, output structures from the value 2 generator are
shown, which produced 93 valid SMILES in 100 random trials. After removing duplicated SMILES, 22 unique
compounds with new value 2 fragments were obtained. In addition, 22 key 1 fragments were constructed from the
22 value 2 fragments and the designated as key 2-9. The value 1 generator then produced 69 unique molecules with
value 1 fragments in 10 random trials with each key 1. A subset of 30 of these value 1 fragments is shown. Figure 6B
illustrates the construction of a new SARM with new key 1 fragments obtained by combining key 2-9 and value 2
fragments. Key 1 fragments are placed in the leftmost column (vertical axis of the SARM) and value 1 fragments
in corresponding rows. Each combination (cell) of a new key 1 and value 1 fragment yields a unique compound.
For SARM expansion, key 1 and value 2 fragments were filtered and accepted on the basis of log_likelihood scores
applying threshold values of § <10 and § <5, respectively. Through DeepSARM expansion, SARMs exclusively
containing new structures can be systematically constructed for each newly generated key 2 fragment, as illustrated
in Figure 6B. Thereby, analog space of original SARMs is substantially increased with structures related to yet
distinct from original fragments.

Conclusion

The SARM methodology was originally developed to combine the identification and structural organization of
compound series with the design of new analogs. Individual SARMs, which are reminiscent of R-groups tables
and thus easily accessible by medicinal chemists, represent the basic data structure. For different sets of active
compounds, variably sized ensembles of SARMs are usually obtained. The SARM method was further extended
through incorporation of functions for compound activity prediction, combined SARM display and systematic
analog searching. Original SARM-based analog design was confined to recombination of structural fragments
extracted from known inhibitors, thus narrowly charting chemical space around series of interest. It has been our
intention to further enhance analog design including novel fragments and compounds, thereby increasing coverage
of series-centric chemical space. To these ends, the DeepSARM concept was developed. DeepSARM is an analog
design approach that is specific to the SARM context. There currently is no comparable analog design methodology
available. The underlying idea is refining and expanding analog design by taking compound information for a
target family into consideration, followed by fine-tuning of the design toward for a target of interest. This makes
it possible to complement a population of virtual analogs derived from compounds active against a target of
interest with analogs having novel structural features. Therefore, an integral part of DeepSARM is a deep learning
architecture, comprising three Seq2Seq models for fragment generation following the key—value-based compound
design strategy specific to the SARM methodology. DeepSARMs expands existing SARMs (individual compound
matrices) through the incorporation of novel fragments and generates new SARMs exclusively consisting of new
fragments and virtual analogs. As an exemplary application, SARM expansion through generative modeling was
carried out for kinase inhibitors, illustrating the DeepSARM approach.

Future perspective

Given the critically important role of analog design for SAR analysis, hit-to-lead and LO projects in medicinal
chemistry, computational support is highly desirable. Analog searching and design can be attempted in different ways
at varying levels of computational sophistication. The SARM method combines structural analysis of compound
datasets and organization of analog series with the generation of new virtual analogs, which sets it apart from other
computational approaches. DeepSARM further extends SARM-based design through expansion of matrices with
structurally novel fragments and analogs. To achieve this goal, an SARM-specific architecture for Seq2Seq learning
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Figure 6. Novel structure-activity relationship matrix. (A) Novel key 2, value 2 and value 1 structures are shown used for
structure-activity relationship matrix (SARM) expansion. (B) The resulting SARM exclusively contains virtual analogs not present in
original SARMs. The representation is according to Figure 5C.

and generative modeling was designed and implemented. The DeepSARM methodology has been extensively
tested and is readily applicable to different targets and families, as illustrated by an exemplary application presented
herein. Going forward it is intended to use the DeepSARM framework for practical applications in hit-to-lead and
LO projects. For example, an application scenario highly suitable for DeepSARM, given its characteristic features,
is its use on large and related parallel compound series during later stages of LO campaigns. In such cases, all
structural relationships between series can be systematically investigated and analog design via DeepSARM can
explore potential opportunities to bridge between series and combine different structural features. Furthermore,
given DeepSARM’s two-level fragment generation approach, it can be elegantly used to complement analog design
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Figure 6. Novel structure-activity relationship matrix (cont.). (A) Novel key 2, value 2 and value 1 structures are shown used for
structure-activity relationship matrix (SARM) expansion. (B) The resulting SARM exclusively contains virtual analogs not present in

original SARMs. The representation is according to Figure 5C.

for evolving series with information from external compound sources. In this case, the target family compound
pool contains active compounds of interest from external sources. The implemented learning approach is capable
of producing structural novelty through generating and combining fragments of different origins. Moreover,
DeepSARM will also be applicable to design tasks outside the LO context. For example, for target families with
single or multiple high-priority targets, DeepSARM models can generate focused virtual libraries on the basis
of existing compound datasets. Hence, there is a variety of attractive opportunities for future applications of
the DeepSARM approach. Finally, from a computational viewpoint, one might also consider adding other filter
functions to DeepSARM for further prioritizing virtual candidates on the basis of multiple optimization-relevant
molecular properties.
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Summary points

e The generation of analogs plays a central role in medicinal chemistry.

e Computational methods for analog design are of high interest.

e The structure-activity relationship matrix (SARM) methodology is unique among analog design approaches.
e SARM is further extended for exploring new chemical space.

Methodology

e The DeepSARM concept is introduced.

e Sequence-to-sequence models are built for generating new structural fragments.
e The DeepSARM architecture and workflow for analog design are detailed.

e Expansion of SARMs with novel fragments and compounds is illustrated.
Exemplary application

e The generation of new analogs of Aurora A kinase inhibitors is described.

e Kinome-wide inhibitors are taken into account.

e SARM expansion is detailed using representative examples.

e Coverage of chemical space around Aurora inhibitors is extended.

Future perspective

e The DeepSARM methodology is extensively tested.

e Practical applications of DeepSARM will be a major focal point.

e Examples include late-stage lead optimization efforts and focused library design.
e Functionalities will be added to further prioritize virtual candidates.
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