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The pseudokinase complement of the human kinase superfamily consists of 
approximately 60 signaling proteins, which lacks one or more of the amino acids 
typically required to correctly align ATP and metal ions, and phosphorylate protein 
substrates. Recent studies in the pseudokinase field have begun to expose the biological 
relevance of pseudokinases, which are now thought to perform a diverse range of 
physiological roles and are connected to a multitude of human diseases, including 
cancer. In this review, we discuss how and why members of the ‘pseudokinome’ 
represent important new targets for drug discovery, and describe how knowledge of 
protein structure and function provides informative clues to help guide the rational 
chemical design or repurposing of inhibitors to target pseudokinases.
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Background
Protein pseudokinases are ubiquitous among 
the kingdoms of life, accounting for approxi-
mately 10% of a typical vertebrate kinome [1–
4], increasing to >50% of the kinome in the 
unicellular protist Giardia [5]. Their catalyti-
cally active protein kinase counterparts are 
well-known regulators of many eukaryotic 
cellular processes, which tightly control intra-
cellular signaling network by facilitating the 
catalytic transfer of phosphate from ATP to 
substrate proteins. With approximately 50% 
of all proteins thought to be phosphorylated 
in cells [6], it is not surprising that dysregula-
tion of protein kinases is frequently a driving 
factor (or consequence) in a variety of human 
medical disorders including cancers  [7,8], 
Type 2 diabetes  [9], cardiovascular  [10], neu-
rodegenerative  [11] and developmental dis-
eases [12]. This has led to a considerable effort 
to develop small-molecule therapeutic agents 
to control aberrant protein phosphorylation, 
with notable early successes including Ima-

tinib to inhibit BCR–ABL1 chronic myelog-
enous leukemia  [13], vemurafanib to target 
V600E BRAF-mutant melanoma  [14] and 
Lapatinib to treat ERBB2/HER2-amplified 
tumors  [15]. Chemical structures of some of 
the kinase inhibitors discussed in this review 
are depicted in Figure 1.

In stark contrast, pseudokinases are much 
less-well characterized. They are traditionally 
defined as pseudoenzymes [16] lacking one or 
more of the canonical amino acids or motifs 
that are typically required to efficiently coor-
dinate ATP and transfer phosphate in cata-
lytically active kinase counterparts  [3,17,18]. 
Although a loss of catalytic activity appears 
to be a feature of many pseudokinases, the 
ability to bind to and/or hydrolyze ATP 
(sometimes very weakly) can be detected in a 
number of cases [19], including CASK [20,21], 
TRIB2  [22], JAK2  [23], HER3  [24,25], with-
no-lysine kinase (WNK) [26], STRADα [27], 
MLKL [28] and kinase suppressor of ras 1 and 
2 (KSR1/2) [29]. A retained affinity for ATP 
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indicates that nucleotide-dependent switching mech-
anisms may have been preserved in the fold in order 
to regulate a proportion of pseudokinase-dependent 
signaling, either driven through catalytic activity or 
by ATP-driven conformational transitions. Together, 
these requirements for signaling highlight pseudo-
kinases as an important emerging class of drug tar-
gets  [30]. Indeed, ATP binding is now understood to 
be essential for the biological activities of noncatalytic 
pseudokinases such as STRADα  [27] and HER3  [31]. 
In contrast, several pseudokinases that possess a highly 
degraded ATP-binding site (such as vaccinia-related 
kinase 3 [VRK3]) appear to have lost the ability to 
bind ATP completely [4,19]. It is therefore now becom-
ing clear that the rate-limiting cellular outputs of pro-
tein kinases, and in particular pseudokinases, are not 
restricted to intrinsic catalytic turnover [32]. This sug-
gests that the development of ATP competitive, cova-
lent or allosteric small molecules to modulate phos-
phorylation-independent cellular signaling by kinases 
and pseudokinases represents a new pharmacological 
challenge.

Disease-associated pseudokinases
Approximately two-thirds of pseudokinases have 
been implicated in a very diverse range of human dis-
eases  [30]. In the following section, we briefly discuss 
important disease-associated pseudokinases, whose 
biological activities might be susceptible to therapeutic 
intervention with small-molecule ligands.

Janus kinase-, hybrid kinase- and 
pseudokinase-signaling polypeptides
The JAK family of nonreceptor tyrosine kinases con-
sist of JAK1, JAK2, JAK3 and TYK2 [33], which share 
seven regions of sequence termed Janus homology 
(JH) domains. JH1 consists of a conventional tyrosine 
kinase domain that becomes activated upon stimula-
tion of type I/II cytokine receptors [33], and is involved 
in a variety of biological processes including hemato-
poiesis and the regulation of the immune system  [34]. 
The JH1 domain is usually negatively regulated by 
JH2, a pseudokinase-containing domain that lacks the 
catalytic Asp residue in the HRD motif, which is typi-
cally required for catalytic transfer of the γ-phosphoryl 
group to the alcoholic substrate, but nonetheless still 
appears to regulate JAK2 signaling through ATP bind-
ing and/or weak catalytic activity  [35]. In fact, JAK2 
amino acid residues Ser523 and Tyr570 are potential 
substrate sites for the low activity JH2 pseudokinase 
domain, although targeted inactivation of the JH1 
domain completely abolishes Tyr570 phosphorylation 
in vitro, suggesting a rate-limiting requirement for JH1 
in this process [35–37]. Despite binding to ATP, the JH2 

pseudokinase domains of JAK1 and TYK2 appear to 
be catalytically inactive, and neither carry conserved 
JH1 Ser523 and Tyr570 residues, potentially sugges-
tive of a lack of phosphorylation-driven autoregula-
tion  [38,39]. However, ATP binding (which stabilizes 
the JH2 domain of TYK2 without significant struc-
tural reorganization) is still thought to serve a critical 
allosteric function in maintaining the tyrosine kinase 
domain in an auto-inhibited state  [38]. The critical 
importance of JH2-dependent modulation of JAK 
kinase function is further emphasized by the marked 
enhancement in kinase activity upon deletion of the 
pseudokinase domains of JAK2 and 3 [36,40].

To date, JAKs have perhaps been the most inten-
sively studied of the pseudokinases and this can be 
directly attributed to the occurrence of multiple dis-
ease-driving somatic mutations in JH2 domains  [34]. 
Of particular note is a prominent gain of function 
oncogenic variant of JAK2 (V617F)  [41–44] that has 
been strongly implicated in multiple myeloprolifera-
tive neoplasms [39] and is used diagnostically to guide 
therapeutic intervention strategies owing to its occur-
rence in approximately 95% of polycythemia vera and 
approximately 60% of essential thrombocythemia and 
primary myelofibrosis cases [43,45]. The consequence of 
this amino acid substitution is hyperactivation of JAK2 
and constitutive downstream signaling due to a pre-
sumed destabilization of the auto-inhibitory JH1–JH2 
interaction  [46,47]. Interestingly, ATP binding to the 
pseudokinase domain of JAK2 was recently shown 
to be essential for the hyperactivation phenotype of 
pathogenic JH2 mutants such as V617F [48]. This clear 
association with human malignancies, combined with 
the documented ATP-mediated regulation of the pseu-
dokinase domain, suggests that JH2 domains might be 
suitable small-molecule drug targets for the treatment 
of cancer and auto-immune diseases. In this regard, 
ruxolitinib, an orally available tyrosine kinase inhibitor 
that targets the JAK1 and JAK2 JH1 canonical kinase 
domains, was the first US FDA approved inhibitor for 
the treatment of myelofibrosis  [49], and has also been 
approved for patients with polycythemia vera to con-
trol thrombotic events that fail to respond to hydrox-
urea  [50]. Suppression of JAK signaling could also be 
achieved indirectly with small molecules that promote 
JH2 auto-inhibition of JH1 kinase output, which has 
already been suggested mechanistically for TYK2.

HER3/ErbB3 pseudokinases
The clinically significant pseudokinase HER3 belongs 
to the epidermal EGFR family of receptor tyrosine 
kinases. HER3 is a pseudokinase due to a lack of the 
canonical catalytic Asp residue  [17]. In spite of this, 
HER3 is able to bind tightly to ATP (Kd ∼1 μM), 



www.future-science.com 247future science group

Pseudokinases: update on their functions & evaluation as new drug targets    Review

and although it also exhibits very low tyrosine kinase 
activity [24], it appears unlikely that this vestigial phos-
photransferase capacity is required for HER3 func-
tion in cells where this has been tested [25,51]. Instead, 
ligand-induced heterodimerization of HER3 with 
EGFR (HER1) or HER2 stimulates allosteric trans-
activation of these kinases and modulates a myriad of 
cellular responses, including downstream activation 
of the PI3K/AKT signaling pathway  [52,53]. HER3 
is also required for malignant progression in HER2-
amplified breast cancers  [54], which originally led to 
the idea that it might be targeted by conventional 
kinase inhibitors. Indeed, HER3 overexpression and 
mutation is associated with a multitude of human can-
cers [55,56] and it also represents a potential diagnostic 
marker in breast cancer, where it is amplified in around 
60% of cases  [57]. One of the major consequences of 
aberrant HER3 activation is the hyperactivation of 
PI3K/AKT signaling, which classically drives prosur-
vival pathways, and has been linked to the develop-
ment of multidrug resistance in some cancers [58]. This 
is supported by the finding that antibody-mediated 
dual targeting of HER3 and EGFR might be a use-
ful method to overcome acquired resistance elicited 
towards EGFR-targeted therapeutics [59]. Interestingly, 
several cancer-associated somatic mutations that con-
fer a gain-of-function phenotype for HER3 have also 
been reported  [55,60] and structure-based studies indi-
cate that enhancement of HER3 allosteric activation 
function may underscore the molecular mechanisms of 
these ‘activating’ mutations [61]. In this regard, inhibi-
tor compounds that specifically target the active sig-
naling state of HER2 in the HER2–HER3 oncogenic 
complex [51] might have therapeutic potential.

STRADα
The catalytically inactive pseudokinase STRADα 
(and the closely-related, but enigmatic, pseudokinase 
STRADβ) contains a severely degraded kinase domain, 
which is devoid of canonical β3 Lys, DFG and HRD 
motif residues. STRADα functions as an allosteric 
regulator of the tumor-suppressor kinase LKB1, and 
its biological function is dependent on the adoption 
of a closed ‘active’ conformation, which is generated 
upon cooperative binding to ATP and the auxillary 
scaffolding protein MO25α  [27,62]. Formation of the 
LKB1–STRADα–MO25α heterotrimeric complex 
results in LKB1-dependent phosphorylation of AMPK 
and the modulation of many cellular proliferation sig-
naling pathways [27,63]. Several human cancers, and the 
rare inherited disease Peurtz-Jeghers syndrome, are the 
consequence of loss of function mutations in LKB1 
that perturb binding and activation by STRADα and 
MO25α  [62,64]. Furthermore, the effectiveness of the 

broad antitumor drug metformin appears to be con-
tingent on an ability to stimulate LKB1-dependent 
activation of AMPK  [65], which positions STRADα, 
as an important potential therapeutic target for the 
manipulation of downstream effectors of LKB1.

Kinase suppressor of Ras 1 & 2
KSR1 and 2 are important scaffolding pseudokinase 
proteins that coordinate the formation of the (onco-
genic) Raf–MEK–ERK signaling complex [66,67] and 
are also important regulators of immune function 
and metabolism  [68]. KSR 1 and 2 lack the canoni-
cal β3 Lys but are proposed to have dual scaffold-
ing and catalytic roles, with established phosphory-
lated protein substrates including MEK1  [29,69] and 
C-RAF-1  [70,71] within this complex. However, the 
weak kinase activity of mammalian KSRs is likely 
dispensable for MEK phosphorylation and MAPK 
signaling in kinase-impaired mutants  [72], which 
challenges the physiological importance of KSR cata-
lytic activity. KSR1 is a prospective therapeutic target 
of Ras-driven tumors due to its oncogenic potential 
in human cells [67,73,74]. Disease associated mutations 
in KSR2 that disrupt KSR2 signaling through the 
Raf–MEK–ERK pathway have also been linked to 
obesity, insulin resistance and impaired cellular fuel 
oxidation [75].

MLKL
Despite lacking a Glycine-rich loop, and possess-
ing noncanonical HGK and GFE residues in place 
of the typical DFG and HRD motifs, mixed lineage 
kinase domain like (MLKL) binds robustly to ATP 
in an obligate cation-independent manner. However, 
it appears unable to catalyze ATP hydrolysis  [28,76], 
instead driving necroptosis (a form of regulated 
cell death) in a catalytically independent manner. 
MLKL function is indispensable for TNF-α-induced 
necroptosis, which proceeds via the obligate phos-
phorylation of two activation loop residues (Thr357 
and Ser358) in MLKL by the canonical upstream 
kinase RIP3  [76,77]. Phosphorylation at these resi-
dues stabilizes the active conformation of MLKL, 
which facilitates release of the N-terminal domain 
four-helix bundle that drives MLKL oligomeriza-
tion, membrane translocation and subsequent activa-
tion of necroptosis  [78]. Under normal physiological 
conditions, necroptosis is triggered in response to 
physiological or pathophysiological stimuli as part 
of an innate defense against pathogens that suppress 
apoptosis  [79]. However, deregulation of necroptosis 
is a risk factor in a multitude of autoimmune and 
inflammatory diseases  [80], highlighting MLKL as a 
potential novel drug target. So far, only the biological 
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functions of MLKL in relation to necroptosis have 
been dissected, but a mutation (E351K) in the non-
conventional GFE motif (which has evolved in place 
of the DFG motif ) has also been described in human 
cancers, and could possibly be linked to an altered 
affinity or usage for nucleotides [28,81].

Tribbles pseudokinases
Three human Tribbles (TRIB) homologs (TRIB1, 
TRIB2 and TRIB3) are characterized by an N-termi-
nal PEST region, a pseudokinase domain containing 
an atypical DFG metal-binding motif (E[S/N]LED) 
and a C-terminal COP1-binding region  [22,82]. TRIB 
proteins are important regulators of many divergent 
cellular processes including lipoprotein metabolism, 
immune function and cellular differentiation and pro-
liferation  [83]. This is achieved via two major modes 
of action; the first involving the E3-ligase-dependent 
ubiquitination of their protein substrates, and the 
second by modulation of MAPK and AKT signaling 
modules  [82,84–87]. The recently solved crystal struc-
ture of TRIB1 reveals how the SLE motif adopts a 
unique ‘inactive’-like conformation that obstructs 
nucleotide binding in the TRIB1 ATP-binding site 
and potentially also represents a physical barrier to 
ATP-competitive inhibitors  [88]. This adaption pre-
sumably helps TRIB1 to function as an efficient regu-
lator of ubiquitin-mediated substrate degradation and 
limits or rules out ATP binding and hydrolysis. In 
contrast, TRIB2 and 3 demonstrate very weak ATP 
affinity and ATP hydrolysis in vitro  [22]. Dysregula-
tion of TRIB proteins has been implicated in a variety 
of human cancers, including acute myeloid leukemia 
(AML)  [89,90], lung  [91], hepatic cancers  [92] and mela-
noma  [93]. In the case of TRIB2, these malignancies 
are primarily thought to proceed via TRIB-mediated 
degradation of the C/EBPα transcription factor. Inter-
estingly, TRIB2 requires an intact nucleotide-binding 
site in order to drive AML in mice [89], which presents 
a potential opportunity for pharmacological interven-
tion with compounds that target the TRIB2 ATP-
binding site. In this regard, it is noteworthy that our 
lab has recently identified small-molecule ligands from 
a library of kinase inhibitors that interact with TRIB2, 
although the precise binding modes have yet to be 
characterized [82].

As well as being linked to AML, TRIB1 has been 
identified in Down’s syndrome-related human acute 
megakaryocytic leukemia [94]. In this case, the cancer-
associated TRIB1 mutant, R107L, enhances the degra-
dation of C/EBPα through an unknown mechanism. 
Although TRIB3 does not modulate the stability of 
C/EBPα it has been implicated in the degradation of 
acetyl-CoA carboxylase [95]. In addition TRIB3 has a 

role in glucose-induced insulin resistance in diabetic 
rats [96].

WNK
The WNK family of Ser/Thr pseudokinases (com-
prising WNK1–4)  [97] are defined because they lack 
the conserved β3 lysine, which was long assumed to 
be indispensable for nucleotide binding and stabili-
zation of the active kinase conformation  [26]. Despite 
this apparent handicap, WNK family kinases readily 
demonstrate phosphorylation-dependent regulation 
of a host of intracellular substrates. This innovation is 
made possible by the evolution a novel mechanism of 
catalysis; the terminal residue in the glycine-rich loop 
(often a Gly in kinases) is conserved as a Lys residue 
in WNKs and this residue provides the compensa-
tory charge to support the binding of ATP [26]. It has 
been proposed that the site normally occupied by the 
β3 lysine functions as a chloride sensor by binding to 
halide ions and inhibiting WNK activation by auto-
phosphorylation, thus facilitating a feedback mecha-
nism for the regulation of Cl- levels [98]. Consistently, 
in its active state, WNKs phosphorylate and activate 
SPAK and the oxidative stress response kinase (OSR1), 
which in turn modulate the downstream activities 
of Na+-driven, Cl--importing NKCCs (Na+/K+/Cl- 
cotransporters) in order to modulate blood pressure 
and ion homeostasis [97].

WNK family members are differentially expressed 
in tissues and the deregulated function of neuronal 
WNK isoforms has been implicated in various dis-
eases, including hereditary neuropathy and glioma [97]. 
In addition, mutations in WNK1 and WNK4 have 
been linked to hereditary hypertension  [99]. WNK1 
and WNK3 also stimulate proliferative and invasive 
activity in glioma cells  [100–102]. Conversely, WNK2 
predominantly plays a role as a tumor suppressor and 
downregulates cellular proliferation by increasing and 
decreasing activity of Rac1 and RhoA respectively [103].

Protein kinase & pseudokinase small-
molecule inhibitors
The majority of protein kinase inhibitors are revers-
ible ATP-competitive molecules that can broadly 
be classified into two major groups: type 1 inhibi-
tors, which bind to the ATP-binding sites of targets 
assuming a closed ‘active’ conformation (where the 
αC helix and DFG motif are in an inward orienta-
tion) and type II inhibitors that bind to- and lock 
kinases in a more open ‘inactive’ state by occupying a 
hydrophobic groove adjacent to the ATP-binding site 
that only becomes accessible in the ‘DFG-out’ con-
formation  [104]. Achieving selectivity among the large 
kinase superfamily, which all share a high degree of 
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sequence conservation in the active site, has proven 
extremely challenging, and is only truly possible for 
ATP-competitive inhibitors through the exploitation 
of unique features found in regions surrounding the 
ATP-binding site. For example, the pyridinyl-imdazole 
SB 203580 was an early example of a partially selective 
type I inhibitor that targets p38 MAPK α and β iso-
forms, but not the very closely related γ or δ isoforms, 
and this specificity among MAP kinase isoforms was 
deduced to be absolutely dependent on the presence of 
a bulky ‘gatekeeper’ Met in the latter, which imparts 
steric hindrance to inhibitor binding [105,106]. In actual 
fact, the use of promiscuous inhibitors that simultane-
ously target multiple dysregulated signaling pathways 
might actually be advantageous from an oncological 
perspective  [107], but clearly potentially increases the 
risk of adverse side-effects. Such compounds are also 
much less practical for the treatment of (noncancer) 
diseases, where logical mechanistic approaches have 
historically been preferable, reflecting the likelihood 
for long-term therapeutic maintenance and a high 
therapeutic index. In this regard, specific targeting 
of pseudokinases may indeed be useful, in large part 
because these proteins as a class characteristically pos-
sess unusual amino acid compositions and structural 
architecture in the ATP-binding site, be it functional 
or not [18,30]. Exploiting these evolutionary differences 
might facilitate the generation of highly specific ligands 
that are directed against pseudokinases, especially 
those whose regulatory functions are linked to adap-
tions around the nucleotide-binding site. Alternatively, 
chemical genetic ‘bump-and-hole’ approaches, such as 
those pioneered by Shokat and colleagues  [108] might 
be useful approaches for swiftly evaluating pseudoki-
nase signaling with modified kinase inhibitors after 
mutagenesis of the pseudokinase gatekeeper [22,109].

Type I & II ATP-competitive inhibitors: 
insights from kinase structures
Currently, it is estimated that approximately 40% 
of the pseudokinome retains the ability to interact 
with adenine-based nucleotides, and most, if not all, 
of these proteins might theoretically be modulated 
by ATP-competitive inhibitors  [19,110]. To test this 
assertion, two highly generic kinase inhibitors, DAP 
and/or VI16832, were shown to bind to nearly a third 
of a sample set of human pseudokinases  [19], build-
ing upon the very limited small-molecule interactions 
described for pseudokinases, which with the excep-
tion of ErbB3/HER3 have often been omitted from 
biochemical or cellular screening approaches. Indeed, 
the pan-tyrosine kinase inhibitor Bosutinib (SKI-606) 
was one of the first examples of a clinically approved 
multikinase ATP-mimetic compound capable of mod-

ulating the function of the HER3, which it binds to 
with subnanomolar affinity  [111,112]. A low nanomolar 
HER3 affinity for other kinase inhibitors, including 
familiar clinical compounds such as Dasatinib, and 
the covalent compound Neratinib, have also been 
described in the literature  [112]. In addition, HER3 
kinase activity has been successfully targeted with 
compounds such as Compound 2 (Figure 1)  [51], or 
shown to bind to ATP-competitive compounds such 
as KIN001–051  [25]. Paradoxically, binding of bosu-
tinib to the ATP-binding pocket of HER3 actually 
increases the capacity of the pseudokinase to operate 
as an allosteric activator of the ‘receiver’ kinase EGFR 
in a heterodimer, most likely by stabilizing the ‘active’ 
HER3 conformation  [111]. Although in this specific 
example bosutinib fails to elicit a phenotypic ‘inhibi-
tory response’, the data clearly support the hypothesis 
that pseudokinases can be targeted (and perhaps regu-
lated) by ATP-competitive ligands. This finding also 
highlights the potential risk (or advantage, depending 
upon one’s point of view) of small molecules behaving 
as allosteric activators depending on the binding mode 
and induced effects to the kinase fold [113]. This phe-
nomenon has previously been observed for catalytically 
active kinases such as B-RAF, for which binding of cer-
tain inhibitors stabilizes its active state and promotes 
homo- and hetero-dimerization (with C-RAF), stimu-
lating MAPK kinase signaling in the process [114,115]. In 
contrast, inhibitors such as Vemurafenib that stabilize 
an inactive conformation do not promote B-RAF/C-
RAF heterodimerization [114]. As discussed previously, 
the adoption of a ligand-induced ‘active’ conformation 
in STRADα is a critical step in the allosteric activation 
of LKB1 tumor suppressor function [62]. Development 
of compounds that lock STRADα in an appropriate 
conformation might therefore be an effective therapeu-
tic strategy to inhibit downstream proliferative path-
ways in specific tumors.

The TYK2 pseudokinase domain is also likely to 
be amenable to similar targeting by ATP-competitive 
therapeutics, as the TYK2 JH2 domain has recently 
been cocrystalized in complex with small-molecule 
inhibitors that stabilize the intradomain auto-inhibi-
tory interaction with the tyrosine kinase domain, and 
block downstream signaling cascades [38,116]. Although 
currently scarce, pseudokinases whose biological func-
tions are linked to ATP hydrolysis and direct substrate 
phosphorylation, such as WNK, are also obvious tar-
gets for traditional ATP-competitive inhibitors. As 
discussed previously, KSR2 exhibits dual scaffold and 
catalytic activity, and this latter functionality can be 
modulated by pan kinase inhibitors such as ASC24, 
which greatly reduces KSR2-dependent phosphoryla-
tion of MEK1 at non-BRAF phosphorylated Ser resi-
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dues [29]. However, considering the scant evidence for 
physiological catalytic outputs from pseudokinases 
such as KSR and JAK JH2 domains, the effectiveness 
of this approach may be limited.

Although mitigation of aberrant pseudokinase sig-
naling through type-1 inhibition is a potentially attrac-
tive prospect, realizing target selectivity will nearly 
always be a barrier for effective cellular analysis using 
chemical biology approaches  [109], and certainly more 
so than for many clinical evaluations, where efficacy 
and safety can often trump the need for detailed mech-
anistic understanding. The pursuit of type II kinase 
inhibitors might therefore be an alternative approach 
to achieve greater target specificity, especially consider-
ing the reduced amino acid conservation in the areas 
immediately surrounding the ATP pocket (which only 
becomes exposed in the DFG-out state) and also the 
greater conformational variability that is observed 
between kinases in their inactive states [117]. The devel-
opment of compounds that trap or block these different 
induced conformations is a strategy that was exploited 
to a great effect in the development of imatinib, which 
stabilizes ABL in the DFG-out conformation  [118,119] 
and is approved for the treatment of patients with 
BCR–ABL positive chronic myeloid leukemia [120,121]. 
Importantly, the extent to which pesudokinase activ-
ity is regulated by dynamic conformational transitions 
is not yet fully resolved. This notwithstanding, many 
of the hydrophobic amino acid residues that control 
the conformations of canonical kinases are also con-
served in numerous pseudokinases, which predicts 
that an ability to adopt some form of regulatory active 
and/or inactive state upon nucleotide or ligand bind-
ing has at least been partially retained [122]. For exam-
ple, crystal structures of RNase L, which contains a 
catalytically inactive pseudokinase domain  [123–125], 
reveal a rigid closed structure that nonetheless bears 
similarity to the canonical kinase ‘DFG-in’ fold. Of 
potential regulatory relevance, this architecture is 
stabilized when bound to the nonhydrolyzable ATP 
analog AMP–PNP, but becomes severely disrupted 
in the absence of nucleotides, reverting to an inac-
tive conformation. Back-to-back homodimerization 
and consequently activation of the RNase domain was 
shown to be entirely dependent on nucleotide bind-
ing and the adoption of the closed conformation. It is 
also predicted that non-enzymatic activity of MLKL 
is dependent on a conformational change to an active 
form brought about by RIPK3-mediated phosphoryla-
tion of the activation loop [76]. Catalytic-independent 
STRADα signaling also requires a conformational 
transition to an active ‘closed’ state that is induced by 
ATP binding and through complex formation with the 
MO25 scaffold protein [27]. Based on these and other 

examples, it is apparent that the noncatalytic activi-
ties of many pseudokinases may be closely linked to 
an active ‘DFG-in’ conformation, and inhibitors that 
select for or stabilize inactive conformations could 
potentiate phosphorylation independent signaling 
networks. As discussed previously, Bosutinib behaves 
as an allosteric activator of HER3, which would seem 
to indicate that HER3 signaling is at least partially 
dependent on conformational transition states  [111]. It 
seems reasonable to hypothesize that compounds that 
sequester HER3 as an inactive monomer could begin 
to display the qualities of bona fide inhibitors. In sup-
port of this, antibodies that trap HER3 in an inac-
tive conformation or directly inhibit its association 
with active kinase family members neutralize several 
facets of HER3 dependent signaling [126,127]. Recently, 
an ATP-competitive inhibitor (APS-2-79) of KSR2 
was shown to stabilize the pseudokinase in an inac-
tive state and modulate KSR2-dependent MAPK sig-
naling by antagonizing RAF heterodimerization in a 
manner independent of KSR2 catalytic activity  [128]. 
Interestingly, MEK phosphorylation by KSR2 is also 
stimulated by an RAF-mediated allosteric transition 
of KSR2 suggesting that both the catalytic and scaf-
fold output of the protein could be pharmacologically 
targeted [29]. Molecular switching of MLKL to a pseu-
doactive state is a determining factor for its oligomer-
ization and thus membrane translocation, which drives 
necroptosis. Necroptosis was inhibited by a small ATP-
competitive molecule, termed compound 1, although 
it is not clear if this occurs via the stabilization of an 
inactive or active state  [129], and the target specificity 
and mechanism of action have recently been re-eval-
uated  [130]. To our knowledge, the only example of a 
molecule driving type II inhibition with a pseudoki-
nase is that described for KSR2. However, this impor-
tant study serves to expose the potential vulnerability 
of the pseudokinome in general to small-molecule 
intervention. It is also worth considering that stabi-
lization of a ‘native’ DFG-out state is not necessarily 
the only route via which inhibition can be achieved, 
as exemplified by various classes of ATP-competitive 
inhibitors that induce an unusual inactive conforma-
tion in Aurora A that is not associated with ‘normal’ 
catalytic function [131,132].

Type III ‘allosteric’ inhibitors
Two additional modes of kinase inhibition have also 
been described; type III inhibitors that bind to sites out-
side of the ATP-binding pocket to drive conformational 
changes, and type IV (covalent) cysteine-driven interac-
tions. These compounds can offer a distinct efficacious 
and selective advantage over noncovalent type I and II 
inhibitors, which target highly conserved regions of the 
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ATP-binding site, and under physiological conditions 
have limited potency in the presence of high intracel-
lular concentrations of ATP  [133]. In contrast, type III 
kinase inhibitors exert their (allosteric) effects either by 
indirectly targeting catalytic activity or by modulat-
ing noncatalytic function, and generally achieve excel-
lent target precision through binding to less conserved, 
non-ATP-binding sites [134]. For example, GNF-5 binds 
to the myristate pocket of ABL and inhibits the kinase 
by allosterically inducing a restructuring of the ATP-
binding site  [135]. In contrast, AKT can be locked in 
an inactive conformation by compounds which bind at 
the interface between the kinase domain and the pleck-
strin homology domain [136,137], and PDK1 can be tar-
geted by allosteric ligands binding in the PIF-binding 
pocket in the kinase N-lobe that communicates with the 
ATP-binding site when occupied  [138]. Unfortunately, 
most allosteric inhibitors appear to have been discov-
ered serendipitously, and the rational design of new 
target-specific compounds requires a detailed structural 
and biomolecular understanding of the protein and its 
regulatory mechanisms. Indeed, only approximately 
25% of mammalian pseudokinase domains have been 
structurally characterized (Table 1). Although no proof 
of concept for type III inhibition currently exists in the 
public domain for pseudokinases, the growing num-
ber of pseudokinases observed to undergo ‘kinase-like’ 
conformational changes in response to appropriate cel-
lular cues is a promising indication of the potential of 
this area for biomedical research. Indeed, the interesting 
effects of ATP-competitive allosteric regulators of KSR2 
on distinct inhibitors of MEK signaling in RAS-mutant 
cancer cells lends further credence to this theory [128].

Covalent kinase inhibitors & the human 
protein kinome cysteinome
The majority of covalent ‘type IV’ kinase inhibitors are 
versions of established kinase inhibitors that have under-
gone structure-guided modification, specifically with 
the addition of an electrophilic ‘warhead’ to target the 
nucleophilic thiol groups of cysteine residues found in 
their targets [150]. Originally thought to lack clinical util-
ity, in part due to issues with promiscuity, compounds 
containing warheads that target Cys residues have seen a 
resurgence [151,152], driven by the approval of the nonspe-
cific Bruton’s tyrosine kinase inhibitor Ibrutinib [153] and 
the discovery of more potent and selective, compounds 
such as acalabrutinib (ACP-196)  [154]. Although Cys 
residues encoded in the human kinome have not been 
reported to serve a direct catalytic role, in marked con-
trast to protein phosphatases, they are still found in and 
around the ATP pocket in relatively high abundance, 
providing opportunities for redox regulation of the cata-
lytic output or protein interactomes of a large proportion 

of protein kinases  [155,156]. Indeed, based on structural- 
and sequence-based analysis, it has previously been esti-
mated that as many as 39% of protein kinases have acces-
sible noncatalytic cysteines in their active sites [150,157] and 
there has been considerable effort dedicated to developing 
inhibitors that block access to the ATP pocket by cova-
lently modifying such residues. Covalent inhibitors have 
several desirable characteristics compared with reversible 
inhibitors, especially in instances where target specificity 
can be increased, or perhaps even guaranteed, based on 
the distribution of Cys residues in the kinase domain. 
The reactions are energetically favorable, requiring lower 
inhibitor concentrations to achieve high efficacy, and 
once bound the covalent molecule provides terminal 
inhibition, meaning new protein synthesis must occur 
to restore kinase function. Importantly, because targeted 
Cys residues are not uniformly conserved among kinases 
and pseudokinases, they act as specificity filters to limit 
inhibitor promiscuity. Moreover, with deeper analysis 
of kinase conformational changes, thiol groups that are 
differentially exposed in active and inactive kinase states 
will likely produce a diverse and versatile reservoir of 
rather specific drug targets [150]. From a clinical perspec-
tive, one potential downside of using irreversible inhibi-
tors is unanticipated toxicity from concentration depen-
dent off-target adduct formation with hyper-reactive 
cysteines of unrelated proteins, an occurrence that will 
have to be evaluated on a case-by-case basis  [133,158,159]. 
The following section describes how our understanding 
of kinase structures has guided the design of irreversible 
covalent inhibitors with useful target specificity, and how 
this might be applied as a framework for the design of 
similar compounds directed against pseudokinases.

The term ‘cysteinome’ describes a convenient meth-
odology for the categorization of targetable cysteine 
loci in and around the ATP pocket (Figure 2)  [157]. To 
date, most attention has been directed to the develop-
ment of compounds that target Cys on the hinge region 
amino acids that connect the N- and C-terminal kinase 
lobes. For example, the noncatalytic hinge-region cys-
teine (Cys481) of Bruton’s tyrosine kinase is the target 
of Ibrutinib [160], an irreversible inhibitor which is used 
for the treatment of B-cell malignancies chronic lym-
phocytic leukemia [161] and mantle cell lymphoma [162]. 
Sequence alignment reveals that all four other TEC 
family kinases (BMX, ITK, TEC and TXK), in addi-
tion to BLK, JAK3, MKK7 and ErbB family members 
(EGFR, HER2 and HER4), possess an equivalent cys-
teine at this position, and display cross-reactive liabilities 
toward certain compounds [157,159]. As discussed earlier, 
the JAKs are highly attractive therapeutic targets for the 
treatment of numerous human diseases, but develop-
ment of compounds with strong selectivity within this 
family has been impeded by the extremely high sequence 
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identity shared across their conserved tyrosine kinase 
active sites. The hinge region around Cys909 of the 
JAK3 JH1 (kinase) domain is unique among JAKs, and 
provided a potential selectivity handle to develop irre-
versible inhibitor compounds which specifically target 
JAK3 with little cross-reactivity with other JAK kinases 
or kinases carrying analogous Cys residues  [163]. The 
equivalent cysteine (Cys797) of EGFR is also of clini-
cal significance, and is covalently targeted by clinically 
approved covalent inhibitors such as Afatanib for the 
treatment of non-small-cell lung cancer  [164]. Interest-
ingly, a nonconserved and extremely rare hinge-region 
cysteine was exploited to design highly specific inhibi-
tors against EphB3. Only two other human kinases, 
LKB1 and PINK1, share this residue and in these cases 
the Cys appears less accessible compared with that of 
EphB3, which likely greatly improves the specificity of 
the compound  [165]. A highly potent covalent inhibitor 
of JNK family kinases also targets a conserved cyste-
ine on the hinge-loop region (JNK 1/2 Cys 116, JNK 
3 Cys 154) [166]. FGFR4 contains another unique hinge 
region cysteine (Cys552) that is not conserved among 
the three other human FGFR paralogs and is rare (>1%) 
among human kinases in general. Hagel et al., developed 
BLU9931, a covalent compound with ≥50-fold greater 
inhibition of FGFR4 as compared with FGFR1–3, and 
which exhibited significant antitumor activity in hepa-
tocellular carcinoma xenograft models  [167]. Curiously, 
all FGFRs carry a Cys on the glycine-rich loop that is 
the target of the potent irreversible pan-FGFR inhibi-
tor, FIIN-1, which was developed from the noncovalent 
inhibitor PD173074  [168]. To our knowledge FIIN-1 is 
the only current example of a covalent inhibitor that tar-
gets a cysteine at this specific position, although many 
kinases (and pseudokinases) including PLKs, RSKs and 
ZAK also have cysteines on their glycine-rich loops [157].

Cysteine amino acids situated on the ‘roof region’ of 
the ATP-binding pocket, immediately following the 
glycine-rich loop, can also be accessible for covalent 
modification. Cohen et al., exploited such a Cys to target 
p90 ribosomal protein S6 kinase (RSK) family members 
with the compound FMK  [169]. In the design of FMK, 
Cohen et al., took advantage of a small gatekeeper Thr 
(residue 463) found in RSK to ensure selectivity over 
kinases with analogous Cys residues, but that contain 
bulky gatekeeper residues that are prohibitive to com-
pound binding. Cys22 of human centrosomal kinase, 
NEK2, is located at an identical position to that of the 
RSK family of kinases and is targeted by oxindole propy-
namide 16 (JH295), which irreversibly inhibits NEK2 
cellular activity  [170]. Deregulation of the pseudokinase 
HER3 is a feature of several cancers  [171] and the pro-
tein was initially thought to be ‘undruggable’ as it lacked 
detectable kinase activity despite binding ATP [24]. How-N
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ever, TX2-121-1–adamantane conjugates form a cova-
lent bond with Cys721 on the roof of the HER3 ATP-
binding pocket, and partially blocks HER3-dependent 
signaling by targeting the protein for degradation in 
some HER3-dependent cell lines [25].

A specific Cys residue adjacent to the DFG motif 
is another possible target for covalent modification, 
and one whose solvent accessibility might be regulated 
through conformational fluctuations in pseudokinase 
structures. However, this Cys residue is present in 
about 10% of all human kinases, which decreases the 
likelihood of obtaining acceptable levels of selectiv-
ity  [133]. In agreement, the natural product cis-enone 
covalent inhibitor hypothemycin was shown to bind 
to >90% of tested kinases carrying this conserved 
Cys residue, including ERK1, MEK1/2, PDGFRs, 
FLT3 and VEGFRs  [172]. Even in this extreme case, 
careful structure-guided design facilitated the genera-
tion of a compound which could discriminately target 
VEGFR-2 over proteins bearing analogous Cys resi-
dues [173]. This serves to demonstrate the influence that 
alternate chemical scaffolds can have on an inhibitors 
ability to achieve adequate selectivity, even when tar-
geting highly conserved binding sites. Sequence analy-
sis of the pseudokinase NOK reveals that it also con-
tains a Cys at this position [18]. Interestingly, there are 
only two canonical human protein kinases containing 
a Cys residue at the gatekeeper position (SgK494 and 
MOK), neither of which have been targeted covalently, 
and based on our analysis no human pseudokinases.

Cys residues located outside the ATP-binding pocket 
on the activation loop are also potential targets for small-
molecule intervention. However, the challenge of struc-
ture-guided design of such compounds is exacerbated 
by the inherent flexibility of this region. Interestingly, 
Cys covalent modification of the activation segment by 
biologically active factors that induce allosteric inhibi-
tion have already been described for several canonical 
kinases  [155,156,174,175] which suggest that covalent tar-
geting of the activation loop may be a viable prospect. 
Unfortunately, much like allosteric inhibitors, most non-
ATP-binding site compounds have been discovered by 
chance, which reduces the ability to identify suitable 
modifiable-thiol groups. Recently however, the rationale 
design of an irreversible inhibitor of CDK12 and 13 that 
targets a Cys remote from the kinase domain has been 
reported  [53]. THZ531 achieves CDK12 and CDK13 
inhibition by covalently binding to a C-terminal cysteine 
residue and making additional contacts with the ATP 
pocket via its flexible linker region. Even more surprising 
was the discovery that MLKL activity could also be regu-
lated by a covalent compound that exerted its function 
by binding to a region distal to the active site. Cys86 on 
the N-terminal coiled coil domain of MLKL was cova-

lently modified by necrosulfonamide, an interaction that 
blocked necroptosis in human cells [77]. This presents the 
exciting opportunity to scrutinize non-ATP located Cys 
residues (including outside the pseudokinase domain) 
for covalent modification and may greatly expand the 
number of potential drug targets.

The human pseudokinase cysteinome
The examples discussed in this review serve to dem-
onstrate the surprising levels of selectivity that can be 
achieved by drugs that target nonconserved thiol groups, 
many of which are also found among the human pseu-
dokinases. To date, most studies discussing the protein 
kinase ‘cysteinome’ have precluded atypical kinases 
and pseudokinases from evaluation, and only Cys721 
in the pseudokinase domain of HER3 (Figure 2) and 
a nonpseudokinase domain cysteine of MLKL have 
(knowingly) been targeted by a covalent compound 
up to now [25,77]. For this reason, we have analyzed the 
frequency and distribution of Cys residues among the 
complete set of kinase and pseudokinase domains in the 
human kinome, using new comparative Kinview soft-
ware [176] and PKA nomenclature to standardize amino 
acid positions (Figure 3). Cys residues were identified 
at over 100 distinct pseudokinase domain loci (some 
273 Cys residues in total). Interestingly, some Cys posi-
tions were observed at high frequency in both pseudo 
and canonical kinases (e.g., Cys at equivalent position 
273), whereas other Cys residues were less evenly dis-
tributed between the two groups. For example, Cys at 
position 200 (within the canonical activation segment) 
occurs in approximately 20% of protein kinases, but a 
Cys was identified in just two pseudokinases (PSKH2 
and VACAMKL/CAMKV). Cys-200 has known reg-
ulatory functions among canonical kinases including 
PKA, partly due to its close proximity to activating sites 
of auto-phosphorylation [175]. We therefore predict that 
Cys underrepresentation at this position in pseudoki-
nases is a likely consequence of their loss of regulatable 
catalytic function. In marked contrast, Cys at PKA-
equivalent positions 169, 228 and 268 are found at near 
tenfold higher frequency in pseudokinases than among 
conventional kinases (Figure 3, asterisks). Of particu-
lar interest is a Cys amino acid at position 169, which 
is found in 14% of pseudokinases, but less than 2% of 
canonical kinases and lies within the extended HRD 
motif, which is classically involved in phosphate trans-
fer in active kinases. This residue might therefore be a 
useful target for pseudokinase covalent modification. Of 
note, a hinge region Cys residue that has previously been 
targeted by a covalent inhibitor of FGFR4 is also present 
in the pseudokinase Sgk495 (Cys 123, PKA numbering, 
corresponding to Sgk495 Cys 143). SgK495 is a highly 
degraded ‘orphan’ pseudokinase most closely related to 



Figure 2. Schematic representation of positional distribution at key positions among the targeted protein human 
kinome ‘cysteinome’. Yellow residues indicate positions of Cys residues that have been targeted for covalent 
modification in protein kinases and pseudokinases, and modelled using the HER3 tyrosine kinase structure (PDB 
ID: 3LMG). The actual site of covalent attachment, and the PKA equivalent residue, is also shown. AMP–PNP 
ligand is shown in red.
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the Tribbles subfamily of pseudokinases  [22]. Although 
our simple analysis does not take in to account the thiol 
side-chain solvent accessibility of Cys residues, it clearly 
demonstrates that these residues are present, potentially 
biologically relevant, and potentially targetable by appro-
priate chemical reagents in human pseudokinases. They 
could therefore be evaluated much more closely as new 
molecular targets for small molecules related to classical 
kinase inhibitors. One obvious avenue for drug screen-
ing, perhaps based on simple biophysical measurements 
or cell-based coupling, might include focused librar-
ies comprised known inhibitors, including those with 
designed covalent bond forming capabilities (Figure 1).

Future perspective
Pseudokinases evolved unique signaling mechanisms 
to regulate a broad range of cellular processes, many of 
which go awry in disease. It might therefore make sense 
to develop novel medicinal chemistry approaches to 

treat pathophysiological conditions by interfering with 
pseudokinase-mediated signaling. The past decade has 
seen a huge expansion in our understanding of various 
aspects of pseudokinase structure and function, which 
has presented new opportunities to interrogate their 
function with small-molecule inhibitors. Although this 
review has primarily focused on inhibitors that directly 
(or indirectly) interfere with potential pseudokinase 
transitional states, there is tremendous scope for inhibi-
tors with alternative modes of action, such as those that 
might sterically interfere with pseudokinase-driven 
protein–protein interactions. In this regard, stapled 
peptides might be considered to disrupt pseudokinase 
interactions, as illustrated by the development of stapled 
peptides that impair AKAP-mediated localization of the 
PKA complex in an isoform-selective manner  [177,178]. 
Indeed, although pseudokinases frequently possess zero 
or vestigial catalytic activity, they can still form func-
tional complexes with active kinases, often facilitating a 



Figure 3. Frequency and distribution of cysteine amino acids found within the human kinome. The protein kinase ontology (ProKinO) 
browser was used to perform an integrative analysis across all human kinase and pseudokinase sequences (the kinome) in order 
to reveal Cys-residue frequencies and their linear positions relative to the PKA kinase domain. (A) Frequency and distribution of 
cysteine residues in all human kinases. (B) Frequency and distribution of cysteine residues in the human pseudokinases. The relative 
position of secondary structure elements for the canonical PKA kinase domain is shown in both panels, with canonical catalytic and 
regulatory motifs highlighted. Asterisks distinguish positions where a particularly high frequency of cysteine residues are present in 
pseudokinases, which if chemically labile, represent potential targets for chemical covalent modification.
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crucial layer of allosteric regulation. By interfering with 
this process, pseudokinase function might indirectly be 
modulated with compounds that preferentially target 
the induced active-state of binding partners, as exem-
plified by inhibitors directed against the HER2–HER3 

oncogenic pairing [51,61]. A final, potentially significant, 
challenge if pseudokinase therapeutics are to succeed 
is the likely development of drug resistance, a scourge 
associated with the structurally dynamic kinase domain 
fold. Whether the innate dynamic conformational plas-
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ticity of pseudokinases, which has only recently been 
appreciated, underpins the majority of their regulatory 
output is an important factor for consideration in com-
pound design. In this context, it will be important to 
observe whether, as seems possible, pseudokinases (like 
kinases) possess the inherent flexibility to succumb 
to mutations that interfere with drug binding while 
preserving their signaling function.
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Executive summary

•	 Pseudokinases are ubiquitously found in eukaryote kinomes, and are involved in a myriad of cellular processes, 
where they often serve as signaling modulators.

•	 The disruption of pseudokinase signaling function is strongly associated with a wide range of human diseases, 
including cancer.

•	 Regulated pseudokinase-dependent signaling is achieved by ligand or protein induced conformational 
transitions, with signal transduction closely linked to adoption of an appropriate pseudo-active state.

•	 Small-molecule inhibitors with the ability to target and (de)stabilize different pseudokinase structural states 
are promising candidates for the development of new pseudokinase-targeted therapeutics.
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