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What is artificial intelligence & machine learning?
Artificial intelligence (AI), and the subfield of machine learning (ML), study the processes and practicalities of
enabling machines to skilfully perform intelligent tasks, without explicitly being programmed for those tasks.
Recently, AI systems have neared or surpassed human performance in several tasks, such as game playing and image
recognition [1], but these have typically been quite narrow and focused domains. Nonetheless, AI in its various
forms is today successfully applied across a large range of domains and for challenging tasks, ranging from robotics,
speech translation, image analysis and logistics to its ongoing use in designing molecules.

Since the 1960s, medicinal chemistry has applied AI in various forms and with varying degrees of success to
the design compounds. Supervised learning, where labeled training datasets are used to train models is extensively
applied. An example is the quantitative structure–activity relationship (QSAR) approach, which is widely used to
predict properties, such as logP, solubility and bioactivity, for given chemical structures. Conversely, unsupervised
learning, which does not rely on labels, is also popular in medicinal chemistry, with examples such as hierarchical
clustering, algorithms and principal components analysis being used extensively to analyze and break down large
molecular libraries into smaller collections of similar compounds [2].

Hype versus hope: managing expectations
The ultimate goals of applying AI and ML methods to challenges in drug discovery remain the same as they
ever were: bringing the best drugs to the clinic to satisfy unmet medical need. For drug discovery and medicinal
chemistry specifically, this involves tasks in identifying drug targets, identifying lead compounds, optimizing their
designs against multiple property profiles of interest and identifying synthetic routes to realize the composition of
matter.

AI is often seen as a magic button that can be pressed at will to produce the perfect output, often regardless of
input. Whether the AI challenge is to design the perfect image of a cat from a model trained on images of cats,
a car that is able to drive itself without making a single mistake, or a drug that can be designed to treat a disease
safely and efficaciously. While AI is not the answer to every challenge, it is a useful tool that if used correctly can
help to augment current understanding and drive new discoveries. Within medicinal chemistry and drug discovery,
the best AI is not necessarily a single AI that can autonomously design a new drug, but one or many different AIs,
that enable better understanding and the design of new inputs, throughout the drug discovery process from target
selection, hit identification, lead optimization to preclinical studies and clinical trials.

Molecular design
One of the fundamental questions one can ask in drug discovery is: which chemical structures will elicit the desired
property profile. De novo molecular design can combine optimization parameters such as predictive models and
molecular similarity, with molecule generation and search to simulate design–make–test cycles [3]. These in silico
design loops then provide a list of candidate solutions that identify chemical structures that are predicted to be
optimal for the profile defined. However, significant challenges remain with regard to the synthetic tractability of
these candidates.
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An approach to molecular design published recently [4], applies analogs of evolution to optimize chemical
structures against a defined set of objectives, such that a structure with the desired profile emerges, known as
multiparameter optimization [5]. The multiobjective automated replacement of fragments algorithm proceeds by
initializing a population of candidate structures, which are iteratively evaluated, sampled and scored to optimize
against the structure profile of interest. The multiobjective automated replacement of fragments algorithm uses
a database of derived building blocks from known synthetic organic chemistry, called synthetic disconnection
rules, where the bonding patterns and frequency of occurrence of each, are retained. Replacement substructures
are selected using a new algorithm called rapid alignment of topological structures to simultaneously balance the
exploration of the replacements while minimizing the disruption of the information contained in the candidate
structures. This approach was demonstrated to optimize the potency of a CDK2 inhibitor, while also improving its
cell permeability. Furthermore, due to the approach used to generate the list of molecular building blocks, synthetic
accessibility is indirectly considered, but by no means is this measure of synthetic accessibility appropriate in all
cases.

One way that challenges in the automated design of compounds of synthetic tractability has been tackled is
using models based on synthetic rules, which combine building blocks using standard synthetic couplings [6].
However, these approaches tend to limit the exploration of the relevant chemical space [7]. An alternative way to
generate new chemical structures has recently been proposed by Gomez-Bombarelli et al. [8] and Segler et al. [9],
these approaches introduce AI-based generative models for molecules. The models are trained on large datasets
of molecular structures from exemplified medicinal chemistry space, for example, ChEMBL. These generative
models learn a distribution over the molecules in the dataset. From this distribution, these approaches permit the
sampling of novel molecules from the chemistry space that has been learned to be more ‘drug-like’. Recently, a
number of neural generative methods have been proposed and benchmarked for molecular design, with recent
work concluding that recurrent neural networks currently perform the best [10]. However, the main challenge of
synthetic accessibility remains with further work in the field required.

The current active landscape of research in the area of automated molecular design suggests that no one solution
is appropriate for all applications. Recent advances in synthetic tractability (vide infra) will undoubtedly assist in
this task, additionally improved exploration and exploitation of the relevant chemical space remains a significant
obstacle to be able to home in on those chemical structures most relevant to progress to synthesis and testing. One
particular challenge in this arena is the ability to predict reliable properties, such as biological activity.

Predictive modeling
From the origins of atomistic theory, chemists have endeavored to predict the properties of compounds without
requiring to synthesize these compounds. Alexander Crum Brown stated in 1869, that physiological response of a
compound is merely a function of its chemical constitution, however defining that function remains challenging.
QSARs and its relations were first proposed by Hansch and Fujita in 1962, and since this time they have remained
an active area of research. The work on QSAR has led to advances into the routine of particular physicochemical
property predictions, notably exemplified by ClogP, for calculating the octanol/water partition coefficient [11].

Since the formal advent of QSAR over 50 years ago, the numbers of modeling techniques, representations of
molecules and volume of data and compute resource available have increased significantly. The advances in all
of these fields mean that techniques such as deep learning that previously were not appropriate or available to
these datasets can now be utilized. We now have access to large quantities of chemical structure data together with
measured end points of relevance, from which it is possible to generate predictive models. However, there still
remains a limited quantity of these data and even when access is available, the quality of highly variable. Here, the
expectation is that more modern ML methods will be able to tackle these noisy data.

One of the first applications of deep learning to chemical property prediction was as a result of the Merck
molecular activity challenge, with multitask neural networks to predict not only one end point, but multiple end
points simultaneously [12]. Deep learning chemical property prediction is now a very active area of research [13].

Synthesis planning
Planning the synthesis of novel compounds requires expertise, experience and creativity. Even though chemists can
now synthesize almost everything they so desire, some compounds present themselves as tough nuts to crack. In
addition, de novo design can easily suggest millions of chemical structures, only offering reasons why they should be
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made and not how they can be realized. Computer-aided synthesis planning (CASP) can help in both situations:
by providing alternative routes or helping to prioritize compounds which can be readily synthesized.

CASP has a long tradition, starting in the 1960s [14,15]. Ironically however, the main concept developed for CASP,
working backward from the target using transformation rules and heuristics, which is now known as retrosynthetic
analysis, turned out to be tremendously helpful for humans, but less so for machines.

Recently, however, principled headway has been made. Grzybowski and coworkers reinvigorated the classic idea
of heuristic-based analysis by letting experts code a large number of rules into the machine and demonstrated that
the machine was able to propose tractable routes for eight medicinally relevant compounds [16].

Going further, Segler et al. demonstrated that the computer can even learn the rules of organic chemistry
autonomously from chemical reaction data without expert input [17]. Using deep neural networks they first let
the machine learn to focus on the most promising rules for retroanalysis, which are then submitted to reaction
prediction in combination with a modern Monte-Carlo tree search algorithm. A double-blind study, synthetic
organic chemists on an average, considered the routes generated by this method to be at par with routes taken from
the literature.

Feedback loop
Medicinal chemistry and drug discovery projects operate as feedback loops, exemplified as the classical ‘design–
make–test’ cycle, where compounds that are designed must be synthesized and tested experimentally to provide
feedback for further decision making. Evidently, this process is relatively slow and expensive. It may take weeks
to generate experimental data from which new design decisions can be made. Using methods described above in
the ‘Molecular design’ section to generate candidate solutions with appropriate profiles and even how to make the
compounds, will undoubtedly streamline this process. However, what if even further improvement could be made.

Active learning is an area of ML [18] where decisions on the next data point to be – labeled or compound to be
synthesized and – tested can be made effectively and efficiently. One of the expected strengths of this approach is
to be able to simultaneously make predictions for compounds that will progress a project, but also more rapidly
identify the compounds that should be synthesized to improve the models. Such improvement in the models can
thereby indirectly improve and streamline the drug discovery process as the models will improve in prediction of
quality much more rapidly.

While some scientific efforts have been made in the area of active learning in drug discovery, it remains an area
that requires a significant amount of investment to demonstrate its worth prospectively to commit to make and test
the identified compounds [19]. It is challenging to elicit confidence from experimentalists to make compounds that
will not necessarily meet the current objectives of a drug discovery program, but will likely improve the process
going forward. As such, this is an example of AI and ML that is not only bound by its direct importance to drug
discovery, but also the support from those scientists who will work closely with these systems and need to make
and test the compounds as we increasingly automate certain aspects of drug discovery, while ensuring that humans
continue to be heavily involved in the process [20].

Conclusion & future perspective
Recent advances in AI and ML have returned these methods and approaches from their wilderness years. While
many of the new approaches have yet to bear fruit in terms of drugs being progressed to market, initial reports
tend toward the belief that they will become even more integral in the drug discovery process than has hitherto
been seen. Through applications of new and promising techniques, it has been shown that the new systems can
design new chemical structures effectively, predicted for the desired molecular property profiles and even how to
synthesize those compounds. While many of these areas of research have been promised many times before, it is
becoming a perfect storm of many different advances simultaneously reaching their apogee.
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