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Editorial

Liposomal nanocarriers:  
toxicity entrapped
Nanocarriers are being studied and developed as 
a means to improve delivery of anticancer drugs 
to solid tumors. Entrapping an anticancer drug 
in a nanocarrier can improve its therapeutic 
index by increasing the drug concentration at 
the target site in combination with decreasing 
the toxic side effects. Liposomes, phospholipid-
based nano-sized vesicles, represent one of the 
best-studied types of nanocarriers for drug deliv-
ery purposes. They are being used clinically, for 
instance for the treatment of fungal infections 
(liposomal amphotericin B, Ambisome®) or 
cancer (liposomal daunorubicin, Daunoxome®, 
liposomal doxorubicin, Doxil®/Caelyx® or 
Myocet®). Besides these approved liposomal 
drug formulations, several others are in clini-
cal trials, such as vincristin [1,2], lurtotecan [3,4], 
cisplatin [5], prednisolone [6] and combinations 
of irinotecan and floxuridine [7], and cytarabine 
and daunorubicin [8,9]. 

“Entrapping an anticancer drug in a 
nanocarrier can increase the drug  

concentration at the target site and  
decrease the toxic side effects.”

In general, liposomes offer the advantages that 
they are biocompatible, have a high drug pay-
load and greatly improve pharmacokinetics and 
biodistribution of encapsulated drugs. Usually 
these result in increased blood-residence time, 
decreased drug toxicity and enhanced drug accu-
mulation at tumor sites. Increased accumulation 
is due to the relative leakiness of tumor vascu-
lature in comparison with normal vasculature. 
This allows extravasation of long-circulating 
small (100  nm) liposomes in animal tumor 
models [10,11], as well as in cancer patients [12,13]. 
Clinical studies, mainly performed with the 
PEGylated liposomal doxorubicin (PLD) 

formulation Doxil, have demonstrated strongly 
improved toxicity profiles compared with free 
doxorubicin administration [12,14], and therapeu-
tic efficacy of PLD in several large randomized 
trials [15–17].

Two main challenges for future liposomal 
drug formulations for solid-tumor treatment are 
increased targeting to tumor sites and improved 
bioavailability of the encapsulated drugs to 
tumor cells. 

Increasing tumor targeting
Although tumor vessels can be permeable for 
liposome extravasation, preclinical and clini-
cal studies demonstrated that levels of lipo-
some accumulation in tumors vary strongly 
amongst different tumor types and even within 
a tumor  [13,18,19]. Besides, tumor size appears 
to be inversely related with liposome accumu-
lation [13] and to be a strong prognostic factor 
for response to treatment with PLD in ovarian 
cancer patients [20]. 

Successful strategies to improve accumulation 
of liposomal doxorubicin in solid tumors include 
those that aim to manipulate tumor vasculature. 
‘Abnormalizing’ tumor vasculature [21] using 
low-dose TNF-a results in improved and more 
homogeneous accumulation of liposomes and 
liposomal drugs [19,22]. A similar strategy using 
hyperthermia, which is known to increase tumor 
perfusion, vascular permeability and microcon-
vection in the tumor interstitial space, results 
in increased intra-tumoral liposome accumu-
lation  [23,24]. In contrast, vascular normaliza-
tion through VEGF signaling blockade, which 
improves delivery of low-molecular-weight 
cytotoxic drugs [25], caused a decrease in tumor 
penetration of PLD [26]. Vascular modulation 
has a strong potency to increase drug delivery, 
but should be carefully fine tuned with regard to 
the drug delivery vehicle. Hyperthermia in this 
respect represents a clinically relevant strategy 
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that can improve liposome accumulation. The 
number of clinical studies combining hyperther-
mia with PLD are small, but results suggest a 
therapeutic benefit [27–29].

Improve drug bioavailability 
Most liposomal drugs are formulated to remain 
stably entrapped in the carrier upon systemic 
administration and subsequent circulation. For 
instance, over 98% of doxorubicin administered 
as PLD remains entrapped during circulation for 
7 days [13,30]. This characteristic strongly contrib-
utes to the observed favorable pharmacokinetics 
as the vast majority of the drug will remain 
confined to the blood circulation, causing a low 
volume of distribution in comparison to the free 
drug. Stable-drug entrapment also prevents major 
toxicity of the entrapped compound, for instance 
doxorubicin cardiotoxicity when formulated as 
PLD [13]. However, this important feature for 
circulating liposomes turns out to be a major 
drawback upon arrival at the tumor, where lipo-
somal drugs need to become bioavailable to the 
tumor cells; this process is severely hampered 
by the stable formulation. In fact not much is 
known about the intra-tumoral fate of liposo-
mal doxorubicin or about mechanisms involved 
in its release. Some studies claim involvement 
of tumor-associated macrophages, which either 
phagocytose the liposomes and release the drug in 
active form in the tumor area [31] or are involved in 
increasing the microvascular permeability leading 
to increased liposome accumulation [32]. Other 
publications demonstrated little to no effect of 
tumor-associated macrophages in therapeutic 
efficacy of PLD [33]. Recently, Seynhaeve et al. 
demonstrated significant levels of uptake of lipo-
somal doxorubicin by tumor cells in living mice 
using intravital microscopy. Upon internaliza-
tion liposomes remained in the cytoplasm and 
slowly released their doxorubicin content as evi-
denced by the nuclear doxorubicin appearance 
2–3 days after administration [19]. Supportively, 
Laginha et al. quantified the bioavailability of 
PLD to be around 30–50% over several days after 
intravenous administration by measuring drug 
levels in isolated tumor cell nuclei [34].

Triggered drug release
The findings that the highly stable liposomal drug 
formulations consequently have a low drug bio-
availability and slow drug release in the tumor 
call for further improvement. Development of 
controlled or triggered release systems represents 
a promising approach to deal with this challenge. 

Incorporating a functionality in liposomes that 
triggers drug release not only enhances drug bio-
availability, but also introduces a control option 
within the liposome, by which drugs may only 
be released upon command in a localized area. 
Several different ways to introduce triggered 
release functionality into liposomes exist, vary-
ing from programmed enzymatic or pH-initiated 
destabilization of the liposomal bilayer or the 
PEGcoating surrounding the liposome to exter-
nally applied triggers such as light, heat and ultra-
sonic wave (reviewed elsewhere [35]). Currently 
the most well-developed approach for triggered 
release is the use of hyperthermia in combination 
with thermosensitive liposomes (TSL). 

This approach relies on original findings by 
Yatvin et al., who described the use of phospho-
lipids that undergo a phase transition at tem-
peratures of around 44°C to release compounds 
entrapped in liposomes composed of these phos-
pholipids [36]. In later years this approach fur-
ther developed into more advanced temperature-
triggered release systems by applying efficient 
drug loading technology [37], PEGcoating of the 
liposomes [38–40], the inclusion of lysolipids to 
obtain burst-release properties [41], the develop-
ment of novel lipids enhancing both circulation 
time and drug release [42] and by co-entrapment 
of imaging agents allowing for image-guided 
drug delivery [43–46]. To date, a TSL formula-
tion called ThermoDox®, originally discov-
ered by Needham and Dewhirst [41], has been 
further developed by the biopharmaceutical 
company Celsion and is currently undergoing 
clinical evaluation.

Hyperthermia & thermosensitive 
liposomes: a hot combination
The advantages of combining TSL with hyper-
thermia are multiple. Hyperthermia represents 
an established clinical treatment option in oncol-
ogy either aiming at direct ablation of tumors 
at high temperatures or applied as mild hyper-
thermia (temperatures up to 43°C) in combi-
nation with radiotherapy and/or chemotherapy. 
In the latter approach, hyperthermia is known 
to strongly enhance the efficacy of radiotherapy 
and chemotherapy. This is related to increased 
perfusion and oxygenation of the tumor, which 
will increase the cytotoxic effects of radia-
tion and chemotherapeutics. In addition, heat 
increases tumor vasculature permeability as well 
as interstitial convection and is able to sensitize 
tumor cells temporarily to the damaging effects 
of radiation or chemotherapeutics. 

Timo LM ten Hagen
Laboratory of Experimental Surgical 
Oncology, Erasmus Medical Center, 
3000 CA Rotterdam, 
The Netherlands
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To date there is firm clinical evidence of 
increased efficacy of combined treatments of 
hyperthermia and chemotherapy [47–49]. A 
recent study by Issels et al. represented a large 
randomized EORTC trial in high-grade soft 
tissue sarcomas and demonstrated a strongly 
increased overall survival in the group of patients 
that completed the hyperthermia and chemo-
therapy protocol compared with chemotherapy 
alone [49]. 

Based on these important clinical data and 
with the knowledge that hyperthermia can now 
be applied in multiple centers in Europe and 
throughout the world, it represents a promis-
ing and feasible approach to further improve 
liposomal chemotherapy using thermosensi-
tive liposomes. Liposomes in this approach 
function as carriers for the drug to be deliv-
ered and will prevent toxic side effects due to 
stable entrapment. Hyperthermia will add to 
liposomal chemotherapy by increasing tumor 
microvascular permeability and thus liposome 
extravasation. Upon arrival in the heated tumor 
area the bilayer of these liposomes will ‘melt’ 
to a fluid state and in that process liposomes 
rapidly release their water-soluble anticancer 
drugs. Upon release the synergistic effects of 
hyperthermia on chemotherapeutic drugs (as 
described previously) will also apply, includ-
ing increased interstitial convection and 
increased tumor cell sensitivity. In principle, 
this approach combines the best of both worlds: 
the decreased systemic toxicity of chemothera-
peutic drugs upon liposomal encapsulation, 
with the improved and triggered drug delivery 
and tumor sensitization by hyperthermia.

In this respect, the ongoing clinical tri-
als using thermosensitive liposomal doxoru-
bicin in combination with hyperthermia in 
patients with locoregional breast carcinoma 
of the chest wall or with radiofrequency abla-
tion (RFA) in patients with hepatocellular car-
cinoma are of great importance to prove the 
validity of the approach. Some results from 
the RFA/ThermoDox clinical studies have 
been described by Poon et al. [50]. They con-
cluded that the approach was safe and resulted 
in delivery of a high dose of doxorubicin to the 
tumor site treated with RFA, thereby improving 
the RFA efficacy. This outcome was promising 
enough to start a large Phase III clinical trial in 
patients with primary or metastatic liver cancer. 
It also became clear that the TSL in this study 
caused considerable high levels of free doxo
rubicin in circulation giving rise to side effects 

similar to free drug administration, although 
the overall toxicity profile was improved com-
pared with free drug administration [50]. The 
free doxorubicin in circulation may in part be 
caused by the temperature-mediated release 
from circulating liposomes during RFA, but is 
most likely also related to the relative instability 
of the formulation, which was optimized for 
burst release upon heat. Therefore, challenges 
for current and novel formulations of TSL 
are to achieve a further improved stability at 
physiological temperature combined with rapid 
release at mild hyperthermic temperatures of 
approximately 41°C. In addition, in order to 
further expand the applicability of the heat trig-
gered drug delivery approach to a wider range 
of solid tumors or possible combination treat-
ments, novel TSL drug formulations should be 
developed. Examples of other interesting drugs 
formulated thus far in TSL are cisplatin [51,52], 
melphalan [53], taxol [54] and miltefosine [55]. 
These formulations are still in preclinical stages 
of development and need extensive testing before 
being applied in the clinic.

Imaging to improve
A final challenge lies in further optimizing 
this rather complicated drug delivery approach 
through image-guidance. Current develop-
ments aim at co-entrapment of imaging agents 
allowing for image-guided drug delivery [43–46]. 
This will render online information during 
treatment on accumulation of liposomes in the 
tumor area and will help to decide the opti-
mal moment for triggering drug release using 
heat. During hyperthermia, MRI can be used 
to monitor tumor temperatures as well as drug 
release efficacy through co-release of the encap-
sulated contrast agents. Such image-guided 
approaches will help to further optimize the 
therapy for the individual patient. 

In summary, liposomal formulations of 
chemotherapeutic drugs have proven clinical 
potency in both decreasing toxicity and increas-
ing drug delivery. Two main approaches to fur-
ther optimize liposomal chemotherapy aim at 
increasing liposome accumulation in the tumor 
and improving drug bioavailability. Applying 
hyperthermia in combination with thermo-
sensitive liposomes can help to achieve these 
aims. The applied heat will first increase levels 
of liposome accumulation in the tumor and 
second, induce triggered release from the ther-
mosensitive liposomes. Moreover, the applied 
heat might render tumor cells more sensitive to 
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the chemotherapeutic. This approach has now 
reached the phase of clinical testing and pre-
liminary results from these studies are prom-
ising. Novel formulations with improved sta-
bility and different drugs are being developed 
to broaden the application to a wider range of 
tumor types. Image-guided drug delivery will 
ultimately help to optimize and personalize this 
promising cancer treatment. 
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