We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Research Article

Development of two complementary LC–HRMS methods for analyzing sotatercept in dried blood spots for doping controls

    Tobias Lange

    Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Cologne, Germany

    ,
    Katja Walpurgis

    Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Cologne, Germany

    ,
    Andreas Thomas

    Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Cologne, Germany

    ,
    Hans Geyer

    Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Cologne, Germany

    &
    Mario Thevis

    *Author for correspondence: Tel.: +49 221 4982 7070; Fax: +49 221 4982 7071;

    E-mail Address: m.thevis@biochem.dshs-koeln.de

    Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Cologne, Germany

    European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Center for Preventive Doping Research, German Sport University, Cologne/Bonn, Germany

    Published Online:https://doi.org/10.4155/bio-2018-0313

    Aim: sotatercept is a therapeutic Fc-fusion protein with erythropoiesis-stimulating activity. Due to a potential abuse of the drug by athletes in professional sports, a sensitive detection method is required. In sports drug testing, alternative matrices such as dried blood spots (DBS) are gaining increasing attention as they can provide several advantages over conventional matrices. Materials & methods: Herein, two complementary LC–high-resolution mass spectrometry (HRMS) detection methods for sotatercept from DBS, an initial testing procedure (ITP) and a confirmation procedure (CP) were developed and validated for the first time. Both methods comprise an ultrasonication-assisted extraction, affinity enrichment, proteolytic digestion and HRMS detection. Results & conclusion: For the multianalyte ITP, artificial samples fortified with sotatercept, luspatercept and bimagrumab, and authentic specimens containing bimagrumab were successfully analyzed as proof-of-concept. The validated detection methods for sotatercept are fit for purpose and the ITP was shown to be suitable for the detection of novel IgG-based pharmaceuticals in doping control DBS samples.

    References

    • 1. Robinson N , Kirchbichler A , Banuls O et al. Validation of a blood stability score as an easy-to-use blood sample quality index. Int. J. Lab. Hematol. 38(6), 685–693 (2016).
    • 2. Thevis M , Geyer H , Tretzel L , Schänzer W . Sports drug testing using complementary matrices: advantages and limitations. J. Pharm. Biomed. Anal. 130, 220–230 (2016).
    • 3. Abu-Rabie P , Spooner N , Chowdhry BZ , Pullen FS . DBS direct elution: optimizing performance in high-throughput quantitative LC–MS/MS analysis. Bioanalysis 7(16), 2003–2017 (2015).
    • 4. Dib J , Tretzel L , Piper T et al. Screening for adiponectin receptor agonists and their metabolites in urine and dried blood spots. Clin. Mass Spectrom. 6, 13–20 (2017).
    • 5. Tretzel L , Thomas A , Piper T et al. Fully automated determination of nicotine and its major metabolites in whole blood by means of a DBS online-SPE LC-HR–MS/MS approach for sports drug testing. J. Pharm. Biomed. Anal. 123, 132–140 (2016).
    • 6. Harry Hannon W , Therrell BL Jr . Chapter 1 – History, applications, and healthcare. Dried Blood Spots: Applications and Techniques, First Edition. Li W Lee MS (Eds.) John Wiley & Sons, Inc., NJ, USA/Canada, 3–15 (2014).
    • 7. Bjorkesten J , Enroth S , Shen Q et al. Stability of proteins in dried blood spot biobanks. Mol. Cell Proteomics 16(7), 1286–1296 (2017).
    • 8. Peng SH , Segura J , Farre M , De La Torre X . Oral testosterone administration detected by testosterone glucuronidation measured in blood spots dried on filter paper. Clin. Chem. 46(4), 515–522 (2000).
    • 9. Thomas A , Geyer H , Guddat S , Schänzer W , Thevis M . Dried blood spots (DBS) for doping control analysis. Drug Test. Anal. 3(11–12), 806–813 (2011).
    • 10. Tretzel L , Görgens C , Geyer H et al. Analyses of meldonium (mildronate) from blood, dried blood spots (DBS), and urine suggest drug incorporation into erythrocytes. Int. J. Sports Med. 37(6), 500–502 (2016).
    • 11. Höppner S , Delahaut P , Schänzer W , Thevis M . Mass spectrometric studies on the in vivo metabolism and excretion of SIRT1 activating drugs in rat urine, dried blood spots, and plasma samples for doping control purposes. J. Pharm. Biomed. Anal. 88, 649–659 (2014).
    • 12. Tretzel L , Thomas A , Geyer H et al. Use of dried blood spots in doping control analysis of anabolic steroid esters. J. Pharm. Biomed. Anal. 96, 21–30 (2014).
    • 13. Tretzel L , Thomas A , Geyer H , Pop V , Schänzer W , Thevis M . Dried blood spots (DBS) in doping controls: a complementary matrix for improved in- and out-of-competition sports drug testing strategies. Anal. Methods 7, 7596 (2015).
    • 14. Protti M , Catapano MC , Samolsky Dekel BG et al. Determination of oxycodone and its major metabolites in haematic and urinary matrices: comparison of traditional and miniaturised sampling approaches. J. Pharm. Biomed. Anal. 152, 204–214 (2018).
    • 15. Thomas A , Geyer H , Schänzer W et al. Sensitive determination of prohibited drugs in dried blood spots (DBS) for doping controls by means of a benchtop quadrupole/Orbitrap mass spectrometer. Anal. Bioanal. Chem. 403(5), 1279–1289 (2012).
    • 16. Möller I , Thomas A , Geyer H , Schänzer W , Thevis M . Development and validation of a mass spectrometric detection method of peginesatide in dried blood spots for sports drug testing. Anal. Bioanal. Chem. 403(9), 2715–2724 (2012).
    • 17. Tretzel L , Thomas A , Geyer H , Delahaut P , Schänzer W , Thevis M . Determination of Synacthen® in dried blood spots for doping control analysis using liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 407(16), 4709–4720 (2015).
    • 18. Thomas A , Thevis M . Analysis of insulin and insulin analogues from dried blood spots by means of LC–HRMS. Drug Test. Anal. 10(11–12), 1761–1768 (2018).
    • 19. Reverter-Branchat G , Bosch J , Vall J et al. Determination of recent growth hormone abuse using a single dried blood spot. Clin. Chem. 62(10), 1353–1360 (2016).
    • 20. Cox HD , Hughes CM , Eichner D . Sensitive quantification of IGF-1 and its synthetic analogs in dried blood spots. Bioanalysis 6(19), 2651–2662 (2014).
    • 21. Cox HD , Rampton J , Eichner D . Quantification of insulin-like growth factor-1 in dried blood spots for detection of growth hormone abuse in sport. Anal. Bioanal. Chem. 405(6), 1949–1958 (2013).
    • 22. Ferro P , Ventura R , Perez-Mana C , Farre M , Segura J . Evaluation of fibronectin 1 in one dried blood spot and in urine after rhGH treatment. Drug Test. Anal. 9(7), 1011–1016 (2017).
    • 23. Cox HD , Miller GD , Lai A , Cushman D , Eichner D . Detection of autologous blood transfusions using a novel dried blood spot method. Drug Test. Anal. 9 (11–12), 1713–1720 (2017).
    • 24. Cox HD , Eichner D . A mass spectrometry method to measure membrane proteins in dried blood spots for the detection of blood doping practices in sport. Anal. Chem. 89(18), 10029–10036 (2017).
    • 25. Reverter-Branchat G , Ventura R , Din ME , Mateus J , Pedro C , Segura J . Detection of erythropoiesis stimulating agents in one single dried blood spot. Drug Test. Anal. 10(10), 1496–1507 (2018).
    • 26. Zakaria R , Allen KJ , Koplin JJ , Roche P , Greaves RF . Advantages and challenges of dried blood spot analysis by mass spectrometry across the total testing process. EJIFCC 27(4), 288–317 (2016).
    • 27. Kneepkens EL , Pouw MF , Wolbink GJ et al. Dried blood spots from finger prick facilitate therapeutic drug monitoring of adalimumab and anti-adalimumab in patients with inflammatory diseases. Br. J. Clin. Pharmacol. 83(11), 2474–2484 (2017).
    • 28. Jafari R , Zolbanin NM , Rafatpanah H , Majidi J , Kazemi T . Fc-fusion proteins in therapy: an updated view. Curr. Med. Chem. 24(12), 1228–1237 (2017).
    • 29. Rogers B , Dong D , Li Z , Li Z . Recombinant human serum albumin fusion proteins and novel applications in drug delivery and therapy. Curr. Pharm. Des. 21(14), 1899–1907 (2015).
    • 30. Walpurgis K , Thomas A , Vogel M et al. Testing for the erythropoiesis-stimulating agent sotatercept/ACE-011 (ActRIIA-Fc) in serum by means of western blotting and LC–HRMS. Drug Test. Anal. 8(11–12), 1152–1161 (2016).
    • 31. Reichel C , Farmer L , Gmeiner G , Walpurgis K , Thevis M . Detection of sotatercept (ACE-011) in human serum by SAR-PAGE and western single blotting. Drug. Test. Anal. 10( 6), 927–937 (2017).
    • 32. Martin L , Zouhiri N , Audran M , Marchand A . A validated, sensitive electrophoretic method for the detection of activin receptor type II-Fc fusion proteins in human blood. Drug Test. Anal. 10( 8), 1226–1236 (2018).
    • 33. Walpurgis K , Thomas A , Dellanna F , Schänzer W , Thevis M . Detection of the human anti-ActRII antibody bimagrumab in serum by means of affinity purification, tryptic digestion, and LC–HRMS. Proteomics Clin. Appl. 12(3), e1700120 (2018).
    • 34. Reichel C , Gmeiner G , Thevis M . Antibody-based strategies for the detection of luspatercept (ACE-536) in human serum. Drug. Test. Anal. 9(11–12), 1721–1730 (2017).
    • 35. Walpurgis K , Thomas A , Schänzer W , Thevis M . Myostatin inhibitors in sports drug testing: detection of myostatin-neutralizing antibodies in plasma/serum by affinity purification and western blotting. Proteomics Clin. Appl. 10(2), 195–205 (2016).
    • 36. Reichel C , Gmeiner G , Walpurgis K , Thevis M . Updated protocols for the detection of sotatercept and luspatercept in human serum. Drug Test. Anal 10(11–12), 1708– 1713 (2018).
    • 37. Walpurgis K , Thomas A , Lange T , Reichel C , Geyer H , Thevis M . Combined detection of the ActRII-Fc fusion proteins sotatercept (ActRIIA-Fc) and luspatercept (modified ActRIIB-Fc) in serum by means of immunoaffinity purification, tryptic digestion, and LC–MS/MS. Drug Test. Anal 10( 11–12), 1714– 1721 (2018).
    • 38. Xie C , Yan TM , Chen JM et al. LC–MS/MS quantification of sulfotransferases is better than conventional immunogenic methods in determining human liver SULT activities: implication in precision medicine. Sci. Rep.7, 3858 (2017).
    • 39. Barroso O , Handelsman DJ , Strasburger C , Thevis M . Analytical challenges in the detection of peptide hormones for anti-doping purposes. Bioanalysis 4(13), 1577–1590 (2012).
    • 40. Iancu-Rubin C , Mosoyan G , Wang J , Kraus T , Sung V , Hoffman R . Stromal cell-mediated inhibition of erythropoiesis can be attenuated by sotatercept (ACE-011), an activin receptor type II ligand trap. Exp. Hematol. 41(2), 155–166 (2013).
    • 41. Raje N , Vallet S . Sotatercept, a soluble activin receptor type 2A IgG-Fc fusion protein for the treatment of anemia and bone loss. Curr. Opin. Mol. Ther. 12(5), 586–597 (2010).
    • 42. Santini V . Of blood and bone: the sotatercept adventure. Lancet Haematol. 5(2), E54–E55 (2018).
    • 43. Mies A , Platzbecker U . Increasing the effectiveness of hematopoiesis in myelodysplastic syndromes: erythropoiesis-stimulating agents and transforming growth factor-beta superfamily inhibitors. Semin. Hematol. 54(3), 141–146 (2017).
    • 44. De Rosa G , Andolfo I , Manna F et al. Unraveling the molecular pathogenesis of ineffective erythropoiesis in congenital dyserythropoietic anemia type II: in vitro evaluation of Rap-011 treatment. Haematologica 102, 333–334 (2017).
    • 45. Morse A , Cheng TL , Peacock L , Mikulec K , Little DG , Schindeler A . RAP-011 augments callus formation in closed fractures in rats. J. Orthop. Res. 34(2), 320–330 (2016).
    • 46. Langdon JM , Barkataki S , Berger AE et al. RAP-011, an activin receptor ligand trap, increases hemoglobin concentration in hepcidin transgenic mice. Am. J. Hematol. 90(1), 8–14 (2015).
    • 47. Ear J , Huang H , Wilson T et al. RAP-011 improves erythropoiesis in zebrafish model of diamond-blackfan anemia through antagonizing lefty1. Blood 126(7), 880–890 (2015).
    • 48. Ear J , Huang HG , Tehrani Z et al. RAP-011 efficiently rescues erythropoiesis in zebrafish models of diamond blackfan anemia. Blood 122(21), 3702 (2013).
    • 49. Dussiot M , Maciel T , Fricot A et al. Modulation of activin signaling by RAP-011 (ActRIIA-IgG1) improve anemia, increases hemoglobin levels and corrects ineffective erythropoiesis in beta-thalassemia. Blood 120(21), 247 (2012).
    • 50. Lotinun S , Pearsall RS , Davies MV et al. A soluble activin receptor type IIA fusion protein (ACE-011) increases bone mass via a dual anabolic-antiresorptive effect in cynomolgus monkeys. Bone 46(4), 1082–1088 (2010).
    • 51. Fajardo RJ , Manoharan RK , Pearsall RS et al. Treatment with a soluble receptor for activin improves bone mass and structure in the axial and appendicular skeleton of female cynomolgus macaques (Macaca fascicularis). Bone 46(1), 64–71 (2010).
    • 52. Mulivor AW , Barbosa D , Kumar R , Sherman ML , Seehra J , Pearsall RS . RAP-011, a soluble activin receptor type IIa murine IgG-Fc fusion protein, prevents chemotherapy induced anemia. Blood 114(22), 72–72 (2009).
    • 53. Pearsall RS , Canalis E , Cornwall-Brady M et al. A soluble activin type IIA receptor induces bone formation and improves skeletal integrity. Proc. Natl. Acad. Sci. USA 105(19), 7082–7087 (2008).
    • 54. Lotinun S , Fajardo RJ , Pearsall RS , Bouxsein ML , Baron R . Soluble activin receptor type IIA fusion protein, ACE-011, increases bone mass by stimulating bone formation and inhibiting bone resorption in cynomolgus monkeys. J. Bone Miner. Res. 23, S337–S337 (2008).
    • 55. Fajardo RJ , Bouxsein ML , Pearsall AE et al. ACE-011, a soluble activin receptor type IIA fusion protein, increases BMD and improves microarchitecture in cynomoigus monkeys. J. Bone Miner. Res. 22, S65–S65 (2007).
    • 56. Komrokji R , Garcia-Manero G , Ades L et al. Sotatercept with long-term extension for the treatment of anaemia in patients with lower-risk myelodysplastic syndromes: a Phase 2, dose-ranging trial. Lancet Haematol. 5(2), E63–E72 (2018).
    • 57. Bose P , Daver N , Pemmaraju N et al. Sotatercept (ACE-011) alone and in combination with ruxolitinib in patients (pts) with myeloproliferative neoplasm (MPN)-associated myelofibrosis (MF) and anemia. Blood 130, 255 (2017).
    • 58. Raftopoulos H , Laadem A , Hesketh PJ et al. Sotatercept (ACE-011) for the treatment of chemotherapy-induced anemia in patients with metastatic breast cancer or advanced or metastatic solid tumors treated with platinum-based chemotherapeutic regimens: results from two Phase 2 studies. Support. Care Cancer 24(4), 1517–1525 (2016).
    • 59. Bose P , Daver N , Jabbour EJ et al. Phase-2 study of sotatercept (ACE-011) in myeloproliferative neoplasm-associated myelofibrosis and anemia. Blood 128(22), 478 (2016).
    • 60. Yee AJ , Laubach JP , Nooka AK et al. Phase 1 dose-escalation study of sotatercept (ACE-011) in combination with lenalidomide and dexamethasone in patients with relapsed and/or refractory multiple myeloma. Blood 126(23), 4241 (2015).
    • 61. Smith WT , Havill J , Kopyt N , Kaupke J , Aversa D , Chen NH . Long-term effects of 3 dose levels of sotatercept compared with placebo for correction of anemia in hemodialysis subjects: interim analysis of Ace-011-Ren-001. Nephrol. Dial. Transpl. 30 (2015).
    • 62. Smith W , Malluche H , Hruska K . Quantitative computed tomography results for bone mass and abdominal aortic vascular calcification in hemodialysis subjects treated with escalating dose levels of sotatercept: interim analysis of Ace-011-Ren-001. Nephrol. Dial. Transpl. 30 (2015).
    • 63. Komrokji R , Garcia-Manero G , Ades L et al. A Phase 2, dose-finding study of sotatercept (Ace-011) in patients (Pts) with lower-risk myelodysplastic syndromes (Mds) and anemia requiring transfusion. Haematologica 100, 192–192 (2015).
    • 64. Cappellini MD , Porter J , Origa R et al. Interim results from a Phase 2a, open-label, dose-finding study of sotatercept (Ace-011) in adult patients (Pts) with beta-thalassemia. Haematologica 100, 17–18 (2015).
    • 65. Komrokji RS , Garcia-Manero G , Ades L et al. An open-label, Phase 2, dose-finding study of sotatercept (ACE-011) in patients with low or intermediate-1 (Int-1)-risk myelodysplastic syndromes (MDS) or non-proliferative chronic myelomonocytic leukemia (CMML) and anemia requiring transfusion. Blood 124(21), 3215 (2014).
    • 66. El-Shahawy M , Cotton J , Kaupke J , Wooldridge TD , Weiswasser M , Smith WT . Long-term effects of sotatercept compared with placebo for correction of anemia in hemodialysis subjects: interim analysis of Ace-011-Ren-001 Phase 2a study. Nephrol. Dial. Transpl. 29, 152–153 (2014).
    • 67. El-Shahawy M , Cotton J , Kaupke J , Wooldridge TD , Singh HN , Smith WT . Interim analysis of ace-011-Ren-001: the first 28-day dose cycle of low and medium starting doses of sotatercept compared to placebo for correction of anemia in hemodialysis subjects. Am. J. Kidney Dis. 63(5), A104–A104 (2014).
    • 68. Abdulkadyrov KM , Salogub GN , Khuazheva NK et al. Sotatercept in patients with osteolytic lesions of multiple myeloma. Br. J. Haematol. 165(6), 814–823 (2014).
    • 69. Sherman ML , Borgstein NG , Mook L et al. Multiple-dose, safety, pharmacokinetic, and pharmacodynamic study of sotatercept (ActRIIA-IgG1), a novel erythropoietic agent, in healthy postmenopausal women. J. Clin. Pharmacol. 53(11), 1121–1130 (2013).
    • 70. Cappellini MD , Porter J , Origa R et al. A Phase 2a, open-label, dose-finding study to determine the safety and tolerability of sotatercept (ACE-011) in adults with beta (beta)-thalassemia: interim results. Blood 122(21), 3448 (2013).
    • 71. Chen NH , Laadem A , Sherman ML et al. Exposures and erythropoietic responses to sotatercept (ACE-011) in healthy volunteers and cancer patients: implications for mechanism of action. Blood 120(21), 3454 (2012).
    • 72. Raftopoulos H , Laadem A , Puccio M , Knight RD . A Phase II/III study of sotatercept (ACE-011), an activin antagonist, for chemotherapy-induced anemia in patients with metastatic non-small cell lung cancer treated with first-line platinum-based chemotherapy. J. Clin. Oncol. 29(Suppl. 15), DOI:10.1200/jco.2011.29.15_suppl.tps235 (2011).
    • 73. Borgstein NG , Yang Y , Mook L , Haltom E , Wilson DM , Sherman ML . ACE-011, a soluble activin type IIA receptor IgG-Fc fusion protein, significantly increases bone mineral density in healthy postmenopausal women with normal or low bone mass. Bone 47, S281–S282 (2010).
    • 74. Ruckle J , Jacobs M , Kramer W et al. Single-dose, randomized, double-blind, placebo-controlled study of ACE-011 (ActRIIA-IgG1) in postmenopausal women. J. Bone Miner. Res. 24(4), 744–752 (2009).
    • 75. Borgstein NG , Yang Y , Haltom E , Mook L , Bouxsein M , Sherman ML . ACE-011, a soluble activin receptor type IIA IgG-Fc fusion protein, increases BMD within 4 months in postmenopausal healthy women. Osteoporosis Int. 20(1), 186–186 (2009).
    • 76. Borgstein NG , Yang Y , Condon CH , Haltom E , Sherman ML . ACE-011, a soluble activin receptor type IIA IgG-Fc fusion protein, decreases follicle stimulating hormone and increases bone-specific alkaline phosphatase, a marker of bone formation, in postmenopausal healthy women. Cancer Res. 69(2), 154s–154s (2009).
    • 77. Abdulkadyrov KM , Salogub GN , Khuazheva NK et al. ACE-011, a soluble activin receptor type Iia IgG-Fc fusion protein, increases hemoglobin (Hb) and improves bone lesions in multiple myeloma patients receiving myelosuppressive chemotherapy: preliminary analysis. Blood 114(22), 312–312 (2009).
    • 78. Kim KT , Borgstein NG , Yang YJ et al. ACE-011, a soluble activin receptor type IIa IgG-Fc fusion protein, increases hemoglobin and hematocrit levels in postmenopausal healthy women. Blood 112(11), 1316–1316 (2008).
    • 79. Ruckle J , Jacobs M , Kramer W et al. A single dose of ACE-011 is associated with increases in bone formation and decreases in bone resorption markers in healthy, postmenopausal women. J. Bone Miner. Res. 22, S38–S38 (2007).
    • 80. The World Anti-Doping Code. International Standard. Prohibited List January 2018. www.wada-ama.org/sites/default/files/prohibited_list_2018_en.pdf
    • 81. The World Anti-Doping Code. International Standard for Laboratories January 2015. www.wada-ama.org/sites/default/files/resources/files/WADA-ISL-2015-Final-v8.0-EN.pdf
    • 82. Instruction manual Pierce 660nm Protein Assay. https://assets.thermofisher.com/TFS-Assets/LSG/manuals/MAN0011636_Pierce_660nm_Protein_Asy_UG.pdf
    • 83. Instruction manual NHS Mag Sepharose™ 28-9537-64 AB. www.sigmaaldrich.com/technical-documents/protocols/biology/affinity-chromatography-biomolecules/preactivated-magnetic-beads.html
    • 84. Hahne H , Pachl F , Ruprecht B et al. DMSO enhances electrospray response, boosting sensitivity of proteomic experiments. Nat. Methods 10(10), 989–991 (2013).
    • 85. Matuszewski BK , Constanzer ML , Chavez-Eng CM . Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC–MS/MS. Anal. Chem. 75(13), 3019–3030 (2003).
    • 86. Anderson NL , Anderson NG . The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteomics 1(11), 845–867 (2002).
    • 87. Legeron R , Xuereb F , Chaignepain S et al. A new reliable, transposable and cost-effective assay for absolute quantification of total plasmatic bevacizumab by LC–MS/MS in human plasma comparing two internal standard calibration approaches. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1070, 43–53 (2017).
    • 88. Chiu HH , Tsai IL , Lu YS , Lin CH , Kuo CH . Development of an LC-MS/MS method with protein G purification strategy for quantifying bevacizumab in human plasma. Anal. Bioanal. Chem. 409(28), 6583– 6593 (2017).
    • 89. Razavi M , Anderson NL , Yip R , Pope ME , Pearson TW . Multiplexed longitudinal measurement of protein biomarkers in DBS using an automated SISCAPA workflow. Bioanalysis 8(15), 1597–1609 (2016).
    • 90. Rosting C , Gjelstad A , Halvorsen TG . Water-soluble dried blood spot in protein analysis: a proof-of-concept study. Anal. Chem. 87(15), 7918–7924 (2015).
    • 91. Rosting C , Tran EV , Gjelstad A , Halvorsen TG . Determination of the low-abundant protein biomarker hCG from dried matrix spots using immunocapture and nano liquid chromatography mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1077–1078, 44–51 (2018).
    • 92. Schneck NA , Phinney KW , Lee SB , Lowenthal MS . Quantification of cardiac troponin I in human plasma by immunoaffinity enrichment and targeted mass spectrometry. Anal. Bioanal. Chem. 410(11), 2805– 281 (2018).
    • 93. Mesonzhnik NV , Postnikov PVV , Appolonova SA , Krotov GI . Characterization and detection of erythropoietin Fc fusion proteins using LC–MS. J. Proteome Res. 17( 1), 689– 697 (2017).
    • 94. Smits NG , Blokland MH , Wubs KL , Nessen MA , Van Ginkel LA , Nielen MW . Monolith immuno-affinity enrichment liquid chromatography tandem mass spectrometry for quantitative protein analysis of recombinant bovine somatotropin in serum. Anal. Bioanal. Chem. 407(20), 6041–6050 (2015).
    • 95. Hess C , Thomas A , Thevis M et al. Simultaneous determination and validated quantification of human insulin and its synthetic analogues in human blood serum by immunoaffinity purification and liquid chromatography–mass spectrometry. Anal. Bioanal. Chem. 404(6–7), 1813–1822 (2012).
    • 96. Thevis M . Chapter 2 – Mass spectrometry and the list of prohibited substances and methods of doping. Mass Spectrometry in Sports Drug Testing. Desiderio DM Nibbering NM (Eds.) John Wiley & Sons, Inc., NJ, USA/Canada, 46–47 (2010).
    • 97. Fung EN , Bryan P , Kozhich A . Techniques for quantitative LC–MS/MS analysis of protein therapeutics: advances in enzyme digestion and immunocapture. Bioanalysis 8(8), 847–856 (2016).
    • 98. Ordas I , Mould DR , Feagan BG , Sandborn WJ . Anti-TNF monoclonal antibodies in inflammatory bowel disease: pharmacokinetics-based dosing paradigms. Clin. Pharmacol. Ther. 91(4), 635–646 (2012).
    • 99. Chambers AG , Percy AJ , Yang J , Borchers CH . Multiple reaction monitoring enables precise quantification of 97 proteins in dried blood spots. Mol. Cell. Proteomics 14(11), 3094–3104 (2015).