We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Bioanalytical methods for the determination of cocaine and metabolites in human biological samples

    M Barroso

    † Author for correspondence

    Instituto Nacional de Medicina Legal – Delegação do Sul, Rua Manuel Bento de Sousa, 3, 1150-219 Lisboa, Portugal.

    ,
    E Gallardo

    CICS: Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001 Covilhã, Portugal

    &
    JA Queiroz

    CICS: Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001 Covilhã, Portugal

    Published Online:https://doi.org/10.4155/bio.09.72

    Determination of cocaine and its metabolites in biological specimens is of great importance, not only in clinical and forensic toxicology, but also in workplace drug testing. These compounds are normally screened for using sensitive immunological methods. However, screening methods are unspecific and, therefore, the posterior confirmation of presumably positive samples by a specific technique is mandatory. Although GC–MS-based techniques are still the most commonly used for confirmation purposes of cocaine and its metabolites in biological specimens, the advent of LC–MS and LC–MS/MS has enabled the detection of even lower amounts of these drugs, which assumes particular importance when sample volume available is small, as frequently occurs with oral fluid. This paper will review recently-published papers that describe procedures for detection of cocaine and metabolites, not only in the most commonly used specimens, such as blood and urine, but also in other ‘alternative’ matrices (e.g., oral fluid and hair) with a special focus on sample preparation and chromatographic analysis.

    Bibliography

    • Kolbrich EA, Barnes AJ, Gorelick DA et al. Major and minor metabolites of cocaine in human plasma following controlled subcutaneous cocaine administration. J. Anal. Toxicol.30,501–510 (2006).
    • Boghdadi MS, Henning RJ. Cocaine: pathophysiology and clinical toxicology. Heart Lung26,466–483 (1997).
    • Goldstein RA, DesLauries C, Burda MA. Cocaine: history, social implications, and toxicity – a review. Dis. Mon.55,6–38 (2009).
    • Spihler V. Drugs in saliva. In: Clarke’s Analysis of Drugs and Poisons. Pharmaceutical Press, London, UK 109–123 (2004).
    • Baselt RC. Disposition of Toxic Drugs and Chemicals in Man (7th Edition). Biomedical Publications, CA, USA 256–262 (2004).
    • Cognard E, Bouchonnet S, Staub C. Validation of a gas chromatography–ion trap tandem mass spectrometry for simultaneous analyse of cocaine and its metabolites in saliva. J. Pharm. Biomed. Anal.41,925–934 (2006).
    • Huestis MA, Darwin WD, Shimomura E et al. Cocaine and metabolites urinary excretion after controlled smoked administration. J. Anal. Toxicol.31,462–468 (2007).
    • Scheidweiler KB, Cone EJ, Moolchan ET, Huestis MA. Dose-related distribution of codeine, cocaine, and metabolites into human hair following controlled oral codeine and subcutaneous cocaine administration. J. Pharmacol. Exp. Ther.313,909–915 (2005).
    • Zuo Y, Zhang K, Wu J, Rego C, Fritz J. An accurate and non-destructive GC method for determination of cocaine on US paper currency. J. Sep. Sci.31,2444–2450 (2008).
    • 10  Bones J, Macka M, Paull B. Evaluation of monolithic and sub 2 µm particle packed columns for the rapid screening for illicit drugs – application to the determination of drug contamination on Irish euro banknotes. Analyst132,208–17 (2007).
    • 11  Jenkins AJ. Drug contamination of US paper currency. Forensic Sci. Int.121,189–193 (2001).
    • 12  Sergi M, Bafile E, Compagnone D, Curini R, D’Ascenzo G, Romolo FS. Multiclass analysis of illicit drugs in plasma and oral fluids by LC–MS/MS. Anal. Bioanal. Chem.393,709–718 (2009).
    • 13  Verstraete AG. Detection times of drugs of abuse in blood, urine, and oral fluid. Ther. Drug. Monit.26,200–205 (2004).
    • 14  Keller T, Keller A, Tutsch-Bauer E, Monticelli F. Driving under the influence of drugs and alcohol in Salzburg and Uppper Austria during the years 2003–2007. Leg. Med.11,S98–S99 (2009).
    • 15  Tóth AR, Varga T, Molnár A, Hideg Z, Somogi G. The role of licit and illicit drugs in traffic (Hungary 2000–2007). Leg. Med. 11,S419–S422 (2009).
    • 16  Jones AW, Holmgren A, Kugelberg FC. Concentrations of cocaine and its major metabolite benzoylecgonine in blood samples from apprehended drivers in Sweden. Forensic Sci. Int.177,133–139 (2008).
    • 17  Yonamine M, Saviano AM. Determination of cocaine and cocaethylene in urine by solid-phase microextraction and gas chromatography–mass spectrometry. Biomed. Chromatogr.20,1071–1075 (2006).
    • 18  Dolan K, Rouen D, Kimber J. An overview of the use of urine, hair, sweat and saliva to detect drug use. Drug Alcohol Rev.23,213–217 (2004).
    • 19  Farell LJ, Kerrigan S, Logan BK. Recommendations for toxicological investigation of drug impaired driving. J. Forensic Sci.52,1214–1218 (2007).
    • 20  Jaffee WB, Trucco E, Teter C, Levy S, Weiss RD. Focus on alcohol and drug abuse: ensuring validity in urine drug testing. Psychiatr. Serv.59,140–142 (2008).
    • 21  Cook JD, Caplan YH, LoDico CP, Bush DM. The characterization of human urine for specimen validity determination in workplace drug testing: a review. J. Anal. Toxicol.24,579–588 (2000).
    • 22  Gallardo E, Queiroz JA. The role of alternative specimens in toxicological analysis. Biomed. Chromatogr.22,795–821 (2008).
    • 23  Barroso M, Dias M, Vieira DN, Queiroz JA, López-Rivadulla M. Development and validation of an analytical method for the simultaneous determination of cocaine and its main metabolite, benzoylecgonine, in human hair by gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom.22,3320–3326 (2008).
    • 24  Musshoff F, Madea B. Analytical pitfalls in hair testing. Anal. Bioanal. Chem.388,1475–1494 (2007).
    • 25  Society of Hair Testing: Recommendations for hair testing in forensic cases. Forensic Sci. Int.145,83–84 (2004).
    • 26  Hill V, Cairns T, Schaffer M. Hair analysis for cocaine: factors in laboratory contamination studies and their relevance to proficiency sample preparation and hair testing practices. Forensic Sci. Int.176,23–33 (2008).
    • 27  Hill V, Cairns T, Schaffer M. Hair analysis for cocaine: the requirement for effective wash procedures and effects of drug concentration and hair porosity in contamination and decontamination. J. Anal. Toxicol.29,319–326 (2005).
    • 28  Blank DL, Kidwell DA. Decontamination procedures for drugs of abuse in hair: are they sufficient? Forensic Sci. Int.70,13–38 (1995).
    • 29  Hoelzle C, Scheufler F, Uhl M, Sachs H, Thieme D. Application of discriminant analysis to differentiate between incorporation of cocaine and its congeners into hair and contamination. Forensic Sci. Int.176,13–18 (2008).
    • 30  Toennes SW, Kauert GF, Steinmeyer S, Moeller MR. Driving under the influence of drugs – evaluation of analytical data of drugs in oral fluid, serum and urine, and correlation with impairment symptoms. Forensic Sci. Int.152,149–155 (2005).
    • 31  Ramaekers JG, Moeller MR, van Ruitenbeek P, Theunissen EL, Schneider E, Kauert G. Cognition and motor control as a function of D9-THC concentration in serum and oral fluid: Limits of impairment. Drug Alcohol Depend.85,114–122 (2006).
    • 32  Drummer OH. Review: pharmacokinetics of illicit drugs in oral fluid. Forensic Sci. Int.150,133–142 (2005).
    • 33  Huestis MA, Oyler JM, Cone EJ, Wstadik AT, Schoendorfer D, Joseph RE. Sweat testing for cocaine, codeine and metabolites by gas chromatography-mass spectrometry. J. Chromatogr.B733,247–264 (1999).
    • 34  Kidwell DA, Smith FP. Susceptibility of PharmChek™ drugs of abuse patch to environmental contamination. Forensic Sci. Int.116,89–106 (2001).
    • 35  Gray T, Huestis M. Bioanalytical procedures for monitoring in utero drug exposure. Anal. Bioanal. Chem.388,1455–1465 (2007).
    • 36  Lozano J, García-Algar O, Vall O, de la Torre R, Scaravelli G, Pichini S. Biological matrices for the evaluation of in uteroexposure to drugs of abuse. Ther. Drug Monit.29,711–734 (2007).
    • 37  Huestis MA, Choo RE. Drug abuse’s smallest victims: in utero drug exposure. Forensic Sci. Int.128,20–30 (2002).
    • 38  Gareri J, Klein J, Koren G. Drugs of abuse testing in meconium. Clin. Chim. Acta366,101–111 (2006).
    • 39  Ostrea EM Jr: Testing for exposure to illicit drugs and other agents in the neonate: a review of laboratory methods and the role of meconium analysis. Curr. Probl. Pediatr.29,37–56 (1999).
    • 40  Moore C, Negrusz A, Lewis D. Determination of drugs of abuse in meconium. J. Chromatogr.B713,137–146 (1998).
    • 41  Montgomery DP, Plate CA, Jones M et al. Using umbilical cord tissue to detect fetal exposure to illicit drugs: a multicentered stuffy in Utah and New Jersey. J. Perionatol.28,750–753 (2008).
    • 42  Eyler FD, Behnke M, Wobie K, Garvan CW, Tebbett I. Relative ability of biologic specimens and interviews to detect prenatal cocaine use. Neurotoxicol. Teratol.27,677–687 (2005).
    • 43  Kim E, Brion LP, Meenan G, Lehrer M, Suresh BR. Perinatal toxicology screening: comparison of various maternal and neonatal samples. J. Perinatol.18,116–121 (1998).
    • 44  Winecker RE, Goldberger BA, Tebbett I et al. Detection of cocaine and its metabolites in amniotic fluid and umbilical cord tissue. J. Anal. Toxicol.21,97–104 (1997).
    • 45  Moore C, Browne S, Tebbett I, Negruzs A, Meyer W, Jain L. Determination of cocaine and benzoylecgonine in human aminiotic fluid using high flow solid-phase extraction columns and HPLC. Forensic Sci. Int.56,177–181 (1992).
    • 46  Moore C, Dempsey D, Deitermann D, Lewis D, Leikin J. Fetal cocaine exposure: analysis of vernix caseosa. J. Anal. Toxicol.20,509–511 (1992).
    • 47  Contreras MT, González M, González S et al. Validation of a procedure for the gas chromatography–mass spectrometry analysis of cocaine and metabolites in pericardial fluid. J. Anal. Toxicol.31,75–80 (2007).
    • 48  Contreras MT, Hernández AF, González M. Application of pericardial fluid to the analysis of morphine (heroin) and cocaine in forensic toxicology. Forensic Sci. Int.164,168–171 (2006).
    • 49  Duer WC, Spitz DJ, McFarland S. Relationships between concentrations of cocaine and its hydrolysates in peripheral blood, heart blood, vitreous humor and urine. J. Forensic Sci.51,421–425 (2006).
    • 50  Fucci N, De Giovanni N, De Giorgio F, Liddi R, Chiarotti M. An evaluation of the Cozart® RapiScan system as an on-site screening tool for drugs of abuse in a non-conventional biological matrix: vitreous humor. Forensic Sci. Int.156,102–105 (2006).
    • 51  Fernández P, Aldonza M, Bouzas A, Lema M, Bermejo AM, Tabernero MJ. GC-FID determination of cocaine and its metabolites in human bile and vitreous humor. J. Appl. Toxicol.26,253–257 (2006).
    • 52  Furnari C, Ottaviano V, Sacchetti G, Mancini M. A fatal case of cocaine poisoning in a body packer. J. Forensic Sci.47,208–210 (2002).
    • 53  Chronister CW, Walrath JC, Goldberger BA. Rapid detection of benzoylecgonine in vitreous humor by enzyme immunoassay. J. Anal. Toxicol.25,621–624 (2001).
    • 54  Mackey-Bojack S, Kloss J, Apple F. Cocaine, cocaine metabolite, and ethanol concentrations in postmortem blood and vitreous humor. J. Anal. Toxicol.24,59–65 (2000).
    • 55  McKinney PE, Phillips S, Gomez HF, Brent J, MacIntyre M, Watson WA. Vitreous humor cocaine and metabolite concentrations: do postmortem specimens reflect blood levels at the time of death?. J. Forensic Sci.40,102–107 (1995).
    • 56  Logan BK, Stafford DT. High-performance liquid chromatography with column switching for the determination of cocaine and benzoylecgonine concentrations in vitreous humor. J. Forensic Sci.35,1303–1309 (1990).
    • 57  Mari F, Politi L, Bertol E. Nails of newborns in monitoring drug exposure during pregnancy. Forensic Sci. Int.179,176–180 (2008).
    • 58  Ragoucy-Sengler C, Kintz P. Detection of smoked cocaine marker (anhydroecgonine methylester) in nails. J. Anal. Toxicol.29,765–768 (2005).
    • 59  Valente-Campos S, Yonamine M, de Moraes Moreau RL, Silva AO. Validation of a method to detect cocaine and its metabolites in nails by gas chromatography–mass spectrometry. Forensic Sci. Int.159,218–222 (2006).
    • 60  Cingolani M, Scavella S, Mencarelli R, Mirtella D, Froldi R, Rodriguez D. Simultaneous detection and quantitation of morphine, 6-acetylmorphine, and cocaine in toenails: comparison with hair analysis. J. Anal. Toxicol.28,128–131 (2004).
    • 61  Engelhart DA, Jenkins AJ. Detection of cocaine analytes and opiates in nails from postmortem cases. J. Anal. Toxicol.26,489–492 (2002).
    • 62  Ropero-Miller JD, Goldberger BA, Cone EJ, Joseph RE Jr. The disposition of cocaine and opiate analytes in hair and fingernails of humans following cocaine and codeine administration. J. Anal. Toxicol.24,496–508 (2000).
    • 63  Garside D, Ropero-Miller JD, Goldberger BA, Hamilton WF, Maples WR. Identification of cocaine analytes in fingernail and toenail specimens. Forensic Sci.43,974–979 (1998).
    • 64  Engelhart DA, Lavins ES, Sutheimer CA. Detection of drugs of abuse in nails. J. Anal. Toxicol.22,314–318 (1998).
    • 65  Skopp G, Pötsch L. A case report on drug screening of nail clippings to detect prenatal drug exposure. Ther. Drug Monit.19,386–389 (1997).
    • 66  McGrath KK, Jenkins AJ. Detection of drugs of forensic importance in postmortem bone. Am. J. Forensic Med. Pathol.30,40–44 (2009).
    • 67  Poklis A, Maginn D, Barr JL. Tissue disposition of cocaine in man: a report of five fatal poisonings. Forensic Sci. Int.33,83–88 (1987).
    • 68  Giroud C, Michaud K, Sporkert F et al. A fatal overdose of cocaine associated with coingestion of marijuana, buprenorphine, and fluoxetine. Body fluid and tissue distribution of cocaine and its metabolites determined by hydrophilic interaction chromatography-mass spectrometry (HILIC–MS). J. Anal. Toxicol.28,464–474 (2004).
    • 69  Vanbinst R, Koenig J, Di Fazio V, Hassoun A. Bile analysis of drugs in postmortem cases. Forensic Sci. Int.128,35–40 (2002).
    • 70  Soriano T, Jurado C, Menéndez M, Repetto M. Improved solid-phase extraction method for systematic toxicological analysis in biological fluids. J. Anal. Toxicol.25,137–143 (2001).
    • 71  Shakleya DM, Huestis MA. Simultaneous quantification of nicotine, opioids, cocaine, and metabolites in human fetal postmortem brain by liquid chromatography tandem mass. Anal. Bioanal. Chem.394(2),513–522 (2009).
    • 72  Yang W, Barnes AJ, Ripple MG et al. Simultaneous quantification of methamphetamine, cocaine, codeine, and metabolites in skin by positive chemical ionization gas chromatography–mass spectrometry. J. Chromatogr.B833,210–218 (2006).
    • 73  Lester L, Uemura N, Ademola J et al. Disposition of cocaine in skin, interstitial fluid, sebum, and stratum corneum. J. Anal. Toxicol.26,547–553 (2002).
    • 74  Levisky JA, Bowerman DL, Jenkins WW, Karch SB. Drug deposition in adipose tissue and skin: evidence for an alternative source of positive sweat patch tests. Forensic Sci. Int.110,35–46 (2000).
    • 75  Burillo-Putze G, López B, León JM et al. Undisclosed cocaine use and chest pain in emergency departments of Spain. Scand. J. Trauma Resusc. Emerg. Med.17,11 (2009).
    • 76  Holmgren A, Holmgren P, Kugelberg FC, Jones AW, Ahlner J. Predominance of illicit drugs and poly-drug use among drug-impaired drivers in Sweden. Traffic Inj. Prev.8,361–367 (2007).
    • 77  Garcia-Jimenez S, Heredia-Lezama K, Bilbao-Marcos F, Fuentes-Lara G, Monroy-Noyola A, Deciga-Campos M. Screening for marijuana and cocaine abuse by immunoanalysis and gas chromatography. Ann. NY Acad. Sci.1139,422–425 (2008).
    • 78  Baker JE, Jenkins AJ. Screening for cocaine metabolite fails to detect an intoxication. Am. J. Forensic Med. Pathol.29,141–144 (2008).
    • 79  Farrell LJ, Kerrigan S, Logan BK. Recommendations for toxicological investigation of drug impaired driving. Forensic Sci.52,1214–1218 (2007).
    • 80  Labat L, Fontaine B, Delzenne C et al. Prevalence of psychoactive substances in truck drivers in the Nord-Pas-de-Calais region (France). Forensic Sci. Int.174,90–94 (2008).
    • 81  Lu NT, Taylor BG. Drug screening and confirmation by GC–MS: comparison of EMIT II and Online KIMS against 10 drugs between US and England laboratories. Forensic Sci. Int.157,106–116 (2006).
    • 82  Cone EJ, Sampson-Cone AH, Darwin WD, Huestis MA, Oyler JM. Urine testing for cocaine abuse: metabolic and excretion patterns following different routes of administration and methods for detection of false-negative results. J. Anal. Toxicol.27,386–401 (2003).
    • 83  Feldman M, Kuntz D, Botelho K et al. Evaluation of Roche Diagnostics ONLINE DAT II, a new generation of assays for the detection of drugs of abuse. J. Anal. Toxicol.28,593–598 (2004).
    • 84  Ch’ng CW, Fitzgerald M, Gerostamoulos J et al. Drug use in motor vehicle drivers presenting to an Australian, adult major trauma centre. Emerg. Med. Australas.19,359–365 (2007).
    • 85  Spiehler V, Isenschmid DS, Matthews P, Kemp P, Kupiec T. Performance of a microtiter plate ELISA for screening of postmortem blood for cocaine and metabolites. J. Anal Toxicol.27,587–591 (2003).
    • 86  Lillsunde P, Michelson L, Forsstrom T et al. Comprehensive drug screening in blood for detecting abused drugs or drugs potentially hazardous for traffic safety. Forensic Sci. Int.77,191–210 (1996).
    • 87  Poklis A, Jortani S, Edinboro LE, Saady JJ. Direct determination of benzoylecgonine in serum by EMIT d.a.u. cocaine metabolite immunoassay. J. Anal Toxicol.18,419–422 (1994).
    • 88  Bogusz M, Aderjan R, Schmitt G, Nadler E, Neureither B. The determination of drugs of abuse in whole blood by means of FPIA and EMIT-dau immunoassays – a comparative study. Forensic Sci. Int.48,27–37 (1990).
    • 89  Pujol ML, Cirimele V, Tritsch PJ, Villain M, Kintz P. Evaluation of the IDS One-step ELISA kits for the detection of illicit drugs in hair. Forensic Sci. Int.170,189–192 (2007).
    • 90  Tsanaclis L, Wicks JF. Patterns in drug use in the United Kingdom as revealed through analysis of hair in a large population sample. Forensic Sci. Int. Aug 170,121–128 (2007).
    • 91  Lachenmeier K, Musshoff F, Madea B. Determination of opiates and cocaine in hair using automated enzyme immunoassay screening methodologies followed by gas chromatographic–mass spectrometric (GC–MS) confirmation. Forensic Sci. Int.159,189–199 (2006).
    • 92  Garcia-Bournissen F, Nesterenko M, Karaskov T, Koren G. Passive environmental exposure to cocaine in Canadian children. Paediatr.11,30–32 (2009).
    • 93  Quintela O, Bermejo AM, Tabernero MJ, Strano-Rossi S, Chiarotti M, Lucas AC. Evaluation of cocaine, amphetamines and cannabis use in university students through hair analysis: preliminary results. Forensic Sci. Int.107,273–279 (2000).
    • 94  Tagliaro F, Valentini R, Manetto G, Crivellente F, Carli G, Marigo M. Hair analysis by using radioimmunoassay, high-performance liquid chromatography and capillary electrophoresis to investigate chronic exposure to heroin, cocaine and/or ecstasy in applicants for driving licences. Forensic Sci. Int.107,121–128 (2000).
    • 95  Moore C, Deitermann D, Lewis D, Feeley B, Niedbala RS. The detection of cocaine in hair specimens using micro-plate enzyme immunoassay. J. Forensic Sci.44,609–612 (1999).
    • 96  Segura J, Stramesi C, Redón A et al. Immunological screening of drugs of abuse and gas chromatographic–mass spectrometric confirmation of opiates and cocaine in hair. J. Chromatogr.B724,9–21 (1999).
    • 97  Niedbala RS, Kardos K, Fries T, Cannon A, Davis A. Immunoassay for detection of cocaine/metabolites in oral fluids. J. Anal. Toxicol.25,62–68 (2001).
    • 98  Cooper G, Wilson L, Reid C, Baldwin D, Main L, Hand C. Evaluation of the Cozart® RapiScan drug test system for opiates and cocaine in oral fluid. Forensic Sci. Int.150,239–243 (2005).
    • 99  Kim I, Barnes AJ, Schepers R et al. Sensitivity and specificity of the Cozart microplate EIA cocaine oral fluid at proposed screening and confirmation cutoffs. Clin. Chem.49,498–1503 (2003).
    • 100  Cooper G, Wilson L, Reid C, Baldwin D, Hand C, Spieher V. Validation of the Cozart® microplate EIA for cocaine and metabolites in oral fluid. J. Anal. Toxicol.28,498–503 (2004).
    • 101  Kolbrich EA, Kim I, Barnes AJ et al. Cozart® RapiScan oral fluid drug testing system: an evaluation of sensitivity, specificity, and efficiency for cocaine detection compared with ELISA and GC–MS following controlled cocaine administration. J. Anal. Toxicol.27,407–411(2003).
    • 102  Grönholm M, Lillsunde P. A comparison between on-site immunoassay drug-testing devices and laboratory results. Forensic Sci. Int.121,37–46 (2001).
    • 103  Peace MR, Tarnai LD, Poklis A. Performance evaluation of four on-site drug-testing devices for detection of drugs of abuse in urine. J. Anal. Toxicol.24,589–594 (2000).
    • 104  Verstraete AG. Oral fluid testing for driving under the influence of drugs: history, recent progress and remaining challenges. Forensic Sci. Int.150,143–150 (2005).
    • 105  Biermann T, Schwarze B, Zedler B, Betz P. On-site testing of illicit drugs: the use of the drug-testing device ‘Toxiquick’. Forensic Sci. Int.143,21–25 (2004).
    • 106  Kacinko SL, Barnes AJ, Kim I et al. Performance characteristics of the Cozart® RapiScan Oral Fluid Drug Testing System for opiates in comparison to ELISA and GC/MS following controlled codeine administration. Forensic Sci. Int.141,41–48 (2004).
    • 107  Barrett C, Good C, Moore C. Comparison of point of collection screening of drugs of abuse in oral fluid with a laboratory based urine screen. Forensic Sci. Int.122,163–166 (2001).
    • 108  Walsh JM, Flegel R, Crouch DJ, Cangianelli L, Baudys J. An evaluation of rapid point-of collection oral fluid drug-testing devices. J. Anal. Toxicol.27,429–439 (2003).
    • 109  Gray TR, Shakleya DM, Huestis MA. A liquid chromatography tandem mass spectrometry method for the simultaneous quantification of 20 drugs of abuse and metabolites in human meconium. Anal. Bioanal. Chem. in press (2009).
    • 110  Antonides HM, Kiely ER, Marinetti LJ. Vitreous fluid quantification of opiates, cocaine, and benzoylecgonine: comparison of calibration curves in both blood and vitreous matrices with corresponding concentrations in blood. J. Anal. Toxicol.31,469–476 (2007).
    • 111  Pehrsson A, Gunnar T, Engblom C, Seppä H, Jama A, Lillsunde P. Roadside oral fluid testing: comparison of the results of drugwipe 5 and drugwipe benzodiazepines on-site tests with laboratory confirmation results of oral fluid and whole blood. Forensic Sci. Int.175,140–148 (2008).
    • 112  Concheiro M, de Castro A, Quintela O, López-Rivadulla M, Cruz A. Determination of drugs of abuse and their metabolites in human plasma by liquid chromatography–mass spectrometry. An application to 156 road fatalities. J. Chromatogr.B832,81–89 (2006).
    • 113  Maralikova B, Weinmann W. Confirmatory analysis for drugs of abuse in plasma and urine by high-performance liquid chromatography–tandem mass spectrometry with respect to criteria for compound identification. J. Chromatogr B8111,21–30 (2004).
    • 114  Brunet BR, Barnes AJ, Scheidweiler KB, Mura P, Huestis MA. Development and validation of a solid-phase extraction gas chromatography–mass spectrometry method for the simultaneous quantification of methadone, heroin, cocaine and metabolites in sweat. Anal. Bioanal. Chem.392,115–127 (2008).
    • 115  Robandt PP, Reda LJ, Klette KL. Complete automation of solid-phase extraction with subsequent liquid chromatography–tandem mass spectrometry for the quantification of benzoylecgonine, m-hydroxybenzoylecgonine, p-hydroxybenzoylecgonine, and norbenzoylecgonine in urine-application to a high-throughput urine analysis laboratory. J. Anal. Toxicol.32,577–585 (2008).
    • 116  Cone EJ, Caplan YH, Black DL, Robert T, Moser F. Urine drug testing of chronic pain patients: licit and illicit drug patterns. J. Anal. Toxicol.32,530–543 (2008).
    • 117  Gunnar T, Ariniemi K, Lillsunde P. Validated toxicological determination of 30 drugs of abuse as optimized derivatives in oral fluid by long column fast gas chromatography/electron impact mass spectrometry. J. Mass Spectrom.40,739–753 (2005).
    • 118  Saito T, Mase H, Takeichi S, Inokuchi S. Rapid simultaneous determination of ephedrines, amphetamines, cocaine, cocaine metabolites, and opiates in human urine by GC–MS. J. Pharm. Biomed. Anal.43,358–363 (2007).
    • 119  Strano-Rossi S, Colamonici C, Botre F. Parallel analysis of stimulants in saliva and urine by gas chromatography/mass spectrometry: perspectives for ‘in competition’ anti-doping analysis. Anal. Chim. Acta606,217–222 (2008).
    • 120  Kala SV, Harris SE, Freijo TD, Gerlich S. Validation of analysis of amphetamines, opiates, phencyclidine, cocaine, and benzoylecgonine in oral fluids by liquid chromatography–tandem mass spectrometry. J. Anal. Toxicol.32,605–611 (2008).
    • 121  Gottardo R, Bortolotti F, De Paoli G, Pascali JP, Miksík I, Tagliaro F. Hair analysis for illicit drugs by using capillary zone electrophoresis–electrospray ionization–ion trap mass spectrometry. J. Chromatogr. A1159,185–189 (2007)
    • 122  Øiestad EL, Johansen U, Christophersen AS. Drug screening of preserved oral fluid by liquid chromatography–tandem mass spectrometry. Clin. Chem.53,300–309 (2007).
    • 123  Bermejo AM, López P, Alvarez I, Tabernero MJ, Fernández P. Solid-phase microextraction for the determination of cocaine and cocaethylene in human hair by gas chromatography-mass spectrometry. Forensic Sci. Int.156,2–8 (2006).
    • 124  de Toledo FC, Yonamine M, de Moraes Moreau RL, Silva OA. Determination of cocaine, benzoylecgonine and cocaethylene in human hair by solid-phase microextraction and gas chromatography–mass spectrometry. J. Chromatogr.B798,361–365 (2003).
    • 125  Alvarez I, Bermejo AM, Tabernero MJ, Fernández P, López P. Determination of cocaine and cocaethylene in plasma by solid-phase microextraction and gas chromatography–mass spectrometry. J. Chromatogr.B845,90–94 (2007).
    • 126  Follador MJ, Yonamine M, de Moraes Moreau RL, Silva OA. Detection of cocaine and cocaethylene in sweat by solid-phase microextraction and gas chromatography/mass spectrometry. J. Chromatogr. B811,37–40 (2004).
    • 127  Gentili S, Cornetta M, Macchia T. Rapid screening procedure based on headspace solid-phase microextraction and gas chromatography–mass spectrometry for the detection of many recreational drugs in hair. J. Chromatogr.B801,289–296 (2004).
    • 128  Pragst F. Application of solid-phase microextraction in analytical toxicology. Anal. Bioanal. Chem.388,1393–414 (2007).
    • 129  Radcliffe C, Maguire K, Lockwood B. Applications of supercritical fluid extraction and chromatography in forensic science. J. Biochem. Biophys. Methods43,261–272 (2000).
    • 130  Allen DL, Oliver JS. The application of supercritical fluid extraction to cocaine and its metabolites in blood and urine. J. Anal. Toxicol.24,228–232 (2000).
    • 131  Kintz P. Bioanalytical procedures for detection of chemical agents in hair in the case of drug-facilitated crimes. Anal. Bioanal. Chem.388,1467–1474 (2007).
    • 132  Pragst F, Balikova MA. State of the art in hair analysis for detection of drug and alcohol abuse. Clin. Chim. Acta370,17–49 (2006).
    • 133  Huang DK, Liu C, Huang MK, Chien CS. Simultaneous determination of morphine, codeine, 6-acetylmorphine, cocaine and benzoylecgonine in hair by liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom.23,957–962 (2009).
    • 134  Musshoff F, Lachenmeier K, Lichtermann D, Madea B. Cocaine and opiate concentrations in hair from subjects in a heroin maintenance program in comparison to a methadone substituted group. Int. J. Legal Med. (2008) (Epub ahead of print).
    • 135  Moore C, Coulter C, Crompton K. Determination of cocaine, benzoylecgonine, cocaethylene and norcocaine in human hair using solid-phase extraction and liquid chromatography with tandem mass spectrometric detection. J. Chromatogr.B859,208–212 (2007).
    • 136  Gottardo R, Polettini A, Sorio D et al. Capillary zone electrophoresis (CZE) coupled to time-of-flight mass spectrometry (TOF–MS) applied to the analysis of illicit and controlled drugs in blood. Electrophoresis29,4078–4087 (2008).
    • 137  Jagerdeo E, Montgomery MA, Lebeau MA, Sibum M. An automated SPE/LC/MS/MS method for the analysis of cocaine and metabolites in whole blood. J. Chromatogr.B874,15–20 (2008).
    • 138  Bertol E, Trignano C, Di Milia MG, Di Padua M, Mari F. Cocaine-related deaths: An enigma still under investigation. Forensic Sci. Int.176,121–123 (2008).
    • 139  Fernández P, Lago M, Lorenzo RA, Carro AM, Bermejo AM, Tabernero MJ. Microwave-Assisted Extraction and HPLC–DAD determination of drugs of Abuse in human plasma. J. Anal. Toxicol.31,388–393 (2007).
    • 140  Johansen SS, Bhatia HM. Quantitative analysis of cocaine and its metabolites in whole blood and urine by high-performance liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr.B852,338–344 (2007).
    • 141  Alvarez I, Bermejo AM, Tabernero MJ, Fernández P, López P. Determination of cocaine and cocaethylene in plasma by solid-phase microextraction and gas chromatography–mass spectrometry. J. Chromatogr.B845,90–94 (2007).
    • 142  Cardona PS, Chaturvedi AK, Soper JW, Canfield DV. Simultaneous analyses of cocaine, cocaethylene, and their possible metabolic and pyrolytic products. Forensic Sci. Int.157,46–56 (2006).
    • 143  Fernández P, Morales L, Vázquez C, Bermejo AM, Tabernero MJ. HPLC–DAD determination of opioids, cocaine and their metabolites in plasma. Forensic Sci. Int.161,31–35 (2006).
    • 144  Jagerdeo E, Abdel-Rehim M. Screening of cocaine and its metabolites in human urine samples by direct analysis in real-time source coupled to time-of-flight mass spectrometry after anline preconcentration utilizing microextraction by packed sorbent. J. Am. Soc. Mass Spectrom.20(5),891–899 (2009).
    • 145  Berg T, Lundanes E, Christophersen AS, Strand DH. Determination of opiates and cocaine in urine by high pH mobile phase reversed phase UPLC–MS/MS. J. Chromatogr.B877,421–432 (2009).
    • 146  Aturki Z, D’Orazio G, Fanali S et al. Capillary electrochromatographic separation of illicit drugs employing a cyano stationary phase. J. Chromatogr. A (2008) (In press).
    • 147  Jagerdeo E, Montgomery MA, Sibum M, Sasaki TA, LeBeau MA. Rapid analysis of cocaine and metabolites in urine using a completely automated solid-phase extraction–high-performance liquid chromatography-tandem mass spectrometry method. J. Anal. Toxicol.32,570–576 (2008).
    • 148  Su HL, Feng LI, Jen HP, Hsieh YZ. Determination of cocaine and its metabolites using cation-selective exhaustive injection and sweeping-MEKC. Electrophoresis29,4270–4276 (2008).
    • 149  Marchei E, Colone P, Nastasi GG et al. On-site screening and GC–MS analysis of cocaine and heroin metabolites in body-packers urine. J. Pharm. Biomed. Anal.48,383–387 (2008).
    • 150  Concheiro M, De Castro A, Quintela O, Cruz A, López-Rivadulla M. Determination of illicit drugs and their metabolites in human urine by liquid chromatography tandem mass spectrometry including relative ion intensity criterion. J. Anal. Toxicol.31,573–580 (2007).
    • 151  Feng J, Wang L, Dai I, Harmon T, Bernet JT. Simultaneous determination of multiple drugs of abuse and relevant metabolites in urine by LC–MS–MS. J. Anal. Toxicol.31,359–368 (2007).
    • 152  Schönberg L, Grobosch T, Lampe D, Kloft C. Toxicological Screening in Urine: Comparison of Two Automated HPLC Screening Systems, Toxicological Identification System (TOX.I.S.*) versus REMEDITM-HS. J. Anal. Toxicol.31,321–327 (2007).
    • 153  Znaleziona J, Petr J, Maier V et al. Capillary electrophoresis as a verification tool for immunochemical drug screening. Biomed. Pap. Med. Fac. Univ .Palacky Olomouc Czech Repub.151,31–36 (2007).
    • 154  Zaitsu K, Miki A, Katagi M, Tsuchihashi H. Long-term stability of various drugs and metabolites in urine, and preventive measures against their decomposition with special attention to filtration sterilization. Forensic Sci. Int.174,189–196 (2008).
    • 155  Fernández P, Lago M, Lorenzo RA, Carro AM, Bermejo AM, Tabernero MJ. Microwave assisted extraction of drugs of abuse from human urine. J. Appl. Toxicol.27,373–379 (2007).
    • 156  Romberg RW, Jamerson MH, Klette KL. Rapid analysis of benzoylecgonine in urine by fast gas chromatography–mass spectrometry. J. Anal. Toxicol.30,554–558 (2006).
    • 157  Jufer R, Walsh SL, Cone EJ, Sampson-Cone A. Effect of repeated cocaine administration on detection times in oral fluid and urine. J. Anal. Toxicol.30,458–462 (2006).
    • 158  Saito T, Mase H, Takeichi S, Inokuchi S. Rapid simultaneous determination of ephedrines, amphetamines, cocaine, cocaine metabolites, and opiates in human urine by GC–MS. J. Pharm. Biomed. Anal.43,358–363 (2007).
    • 159  Moody DE, Fang WB, Andrenyak DM, Monti KM, Jones C. A comparative evaluation of the instant-view 5-panel test card with onTrak TesTcup pro 5: comparison with gas chromatography–mass spectrometry. J. Anal. Toxicol.30,50–56 (2006).
    • 160  Yonamine M, Sampaio MC. A high-performance thin-layer chromatographic technique to screen cocaine in urine samples. Leg. Med.8,184–187 (2006).
    • 161  Fang H, Zeng Z, Liu L, Pang D. On-line back-extraction field-amplified sample injection method for directly analyzing cocaine and thebaine in the extractants by solvent microextraction. Anal. Chem.78,1257–1263 (2006).
    • 162  Miller EI, Wylie FM, Oliver JS. Simultaneous detection and quantification of amphetamines, diazepam and its metabolites, cocaine and its metabolites, and opiates in hair by LC-ESI–MS–MS using a single extraction method. J. Anal. Toxicol.32,457–469 (2008).
    • 163  Vogliardi S, Favretto D, Frison G, Ferrara SD, Seraglia R, Traldi P. A fast screening MALDI method for the detection of cocaine and its metabolites in hair. J. Mass Spectrom.44,18–24 (2009).
    • 164  Hegstad S, Khiabani HZ, Kristoffersen L, Kunøe N, Lobmaier PP, Christophersen AS. Drug screening of hair by liquid chromatography-tandem mass spectrometry. J. Anal. Toxicol.32,364–372 (2008).
    • 165  Mercolini L, Mandrioli R, Saladini B, Conti M, Baccini C, Raggi MA. Quantitative analysis of cocaine in human hair by HPLC with fluorescence detection. J. Pharm. Biomed. Anal.48,456–461(2008).
    • 166  Stramesi C, Polla M, Vignali C, Zucchella A, Groppi A. Segmental hair analysis in order to evaluate driving performance. Forensic Sci. Int.176,34–37 (2008).
    • 167  Tsanaclis L, Wicks JF. Differentiation between drug use and environmental contamination when testing for drugs in hair. Forensic Sci. Int.176,19–22 (2008).
    • 168  Míguez-Framil M, Moreda-Piñeiro A, Bermejo-Barrera P, López P, Tabernero MJ, Bermejo AM. Improvements on enzymatic hydrolysis of human hair for illicit drug determination by gas chromatography/mass spectrometry. Anal. Chem.79,8564–8570 (2007).
    • 169  Gottardo R, Fanigliulo A, Bortolotti F, De Paoli G, Pascali JP, Tagliaro F. Broad-spectrum toxicological analysis of hair based on capillary zone electrophoresis-time-of-flight mass spectrometry. J. Chromatogr. A1159,190–197 (2007).
    • 170  Klys M, Rojek S, Kulikowska J, Bozek E, Scisłowski M.Usefulness of multi-parameter opiates–amphetamines–cocainics analysis in hair of drug users for the evaluation of an abuse profile by means of LC-APCI–MS–MS. J. Chromatogr.B854,299–307 (2007).
    • 171  Garcia-Bournissen F, Rokach B, Karaskov T, Koren G. Cocaine detection in maternal and neonatal hair: implications to fetal toxicology. Ther. Drug Monit.29,71–76 (2007).
    • 172  Gambelunghe C, Sommavilla M, Ferranti C et al. Analysis of anabolic steroids in hair by GC/MS/MS. Biomed. Chromatogr.21,369–375 (2007).
    • 173  Mieczkowski T, Kruger M. Interpreting the color effect of melanin on cocaine and benzoylecgonine assays for hair analysis: brown and black samples compared. J. Forensic Leg. Med.14,7–15 (2007).
    • 174  Politi L, Zucchella A, Morini L, Stramesi C, Polettini A. Markers of chronic alcohol use in hair: comparison of ethyl glucuronide and cocaethylene in cocaine users. Forensic Sci. Int. Oct 172,23–27 (2007).
    • 175  Cristoni S, Basso E, Gerthoux P et al. Surface-activated chemical ionization ion trap mass spectrometry for the analysis of cocaine and benzoylecgonine in hair after extraction and sample dilution. Rapid Commun. Mass Spectrom.21,2515–2523 (2007).
    • 176  Cordero R, Paterson S. Simultaneous quantification of opiates, amphetamines, cocaine and metabolites and diazepam and metabolite in a single hair sample using GC–MS. J. Chromatogr.B850,423–431 (2007).
    • 177  Langel K, Engblom C, Pehrsson A, Gunnar T, Ariniemi K, Lillsunde P. Drug testing oral fluid – evaluation of sample devices. J. Anal. Toxicol.32,393–401 (2008).
    • 178  Fernández P, Morales L, Vázquez C, Lago M, Bermejo AM. Comparison of two extraction procedures for determination of drugs of abuse in human saliva by high-performance liquid chromatography. J. Appl. Toxicol.28,998–1003 (2008).
    • 179  Concheiro M, de Castro A, Quintela O, Cruz A, López–Rivadulla M. Determination of illicit and medicinal drugs and their metabolites in oral fluid and preserved oral fluid by liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem.391,2329–2338 (2008).
    • 180  Cone EJ, Clarke J, Tsanaclis L. Prevalence and disposition of drugs of abuse and opioid treatment drugs in oral fluid. J. Anal. Toxicol.31,424–433 (2007).
    • 181  Concheiro M, de Castro A, Quintela O, Cruz A, López-Rivadulla M. Confirmation by LC–MS of drugs in oral fluid obtained from roadside testing. Forensic Sci. Int.170,156–162 (2007).
    • 182  Pujadas M, Pichini S, Civit E, Santamariña E, Perez K, de la Torre R. A simple and reliable procedure for the determination of psychoactive drugs in oral fluid by gas chromatography-mass spectrometry. J. Pharm. Biomed. Anal.44,594–601(2007).
    • 183  Quintela O, Crouch DJ, Andrenyak DM. Recovery of drugs of abuse from the immunalysis Quantisal™ oral fluid collection device. J. Anal. Toxicol.30,614–616 (2006).
    • 184  Dams R, Choo RE, Lambert WE, Jones H, Huestis MA. Oral fluid as an alternative matrix to monitor opiate and cocaine use in substance-abuse treatment patients. Drug Alcohol Depend.87,258–267 (2007).
    • 185  Toennes SW, Steinmeyer S, Maurer HJ, Moeller MR, Kauert GF. Screening for drugs of abuse in oral fluid – correlation of analysis results with serum in forensic cases. J. Anal. Toxicol.29,22–27 (2005).
    • 186  Wylie FM, Torrance H, Anderson RA, Oliver JS. Drugs in oral fluid: part I. Validation of an analytical procedure for licit and illicit drugs in oral fluid. Forensic Sci. Int.150,191–198 (2005).
    • 187  Wood M, Laloup M, Ramirez Fernandez M del M et al. Quantitative analysis of multiple illicit drugs preserved in oral fluid by solid-phase extraction and liquid chromatography–tandem mass spectrometry. Forensic Sci. Int.150,227–238 (2005).
    • 188  Bernhoft IM, Steentoft A, Johansen SS, Klitgaard NA, Larsen LB, Hansen LB. Drugs in injured drivers in Denmark. Forensic Sci. Int.150,181–189 (2005).
    • 189  Clauwaert K, Decaestecker T, Mortier K et al. The determination of cocaine, benzoylecgonine, and cocaethylene in small-volume oral fluid samples by liquid chromatography–quadrupole-time of- flight mass spectrometry. J. Anal. Toxicol.28,655–659 (2004).
    • 190  Cámpora P, Bermejo AM, Tabernero MJ, Fernández P. Quantitation of cocaine and its major metabolites in human saliva using gas chromatography–positive chemical ionization-mass spectrometry (GC–PCI–MS). J. Anal. Toxicol.27,270–274 (2003).
    • 191  Fucci N, De Giovanni N, Chiarotti M. Simultaneous detection of some drugs of abuse in saliva samples by SPME technique. Forensic Sci. Int.134,40–45 (2003).
    • 192  Yonamine M, Tawil N, Moreau RL, Silva AO. Solid-phase micro-extraction-gas chromatography–mass spectrometry and headspace-gas chromatography of tetrahydrocannabinol, amphetamine, methamphetamine, cocaine and ethanol in saliva samples. J. Chromatogr.B789,73–78 (2003).
    • 193  Dams R, Murphy CM, Choo RE, Lambert WE, De Leenheer AP, Huestis MA. LC-atmospheric pressure chemical ionization–MS/MS analysis of multiple illicit drugs, methadone, and their metabolites in oral fluid following protein precipitation. Anal. Chem.75,798–804 (2003).
    • 194  Cone EJ, Presley L, Lehrer M et al. Oral fluid testing for drugs of abuse: Positive prevalence rates by Intercept™ immunoassay screening and GC–MS–MS confirmation and suggested cutoff concentrations. J. Anal. Toxicol.26,541–546 (2002).
    • 195  Samyn N, De Boeck G, Verstraete A. The use of oral fluid and sweat wipes for the detection of drugs of abuse in drivers. J. Forensic Sci.47,1380–1387 (2002).
    • 196  Mortier KA, Maudens KE, Lambert WE et al. Simultaneous, quantitative determination of opiates, amphetamines, cocaine and benzoylecgonine in oral fluid by liquid chromatography quadrupole-time-of-flight mass spectrometry. J. Chromatogr. B. 779,321–330 (2002).
    • 197  Samyn N, van Haeren C. On-site testing of saliva and sweat with Drugwipe and determination of concentrations of drugs of abuse in saliva, plasma and urine of suspected users. Int. J. Legal Med.113,150–154 (2000).
    • 198  Fucci N, De Giovanni N, Scarlata S. Sweat testing in addicts under methadone treatment: an Italian experience. Forensic Sci. Int.174,107–110 (2008).
    • 199  Keller T, Keller A, Tutsch-Bauer E, Monticelli F. Application of ion mobility spectrometry in cases of forensic interest. Forensic Sci. Int.161,130–140 (2006).
    • 200  Kacinko SL, Barnes AJ, Schwilke EW, Cone EJ, Moolchan ET, Huestis MA. Disposition of cocaine and its metabolites in human sweat after controlled cocaine administration. Clin. Chem.51,2085–2094 (2005).
    • 201  Liberty HJ, Johnson BD, Fortner N. Detecting cocaine use through sweat testing: multilevel modeling of sweat patch length-of-wear data. J. Anal. Toxicol.28,667–673 (2004).
    • 202  Uemura N, Nath RP, Harkey MR, Henderson GL, Mendelson J, Jones RT. Cocaine levels in sweat collection patches vary by location of patch placement and decline over time. J. Anal. Toxicol.28,253–259 (2004).
    • 203  Moody DE, Spanbauer AC, Taccogno JL, Smith EK. Comparative analysis of sweat patches for cocaine (and metabolites) by radioimmunoassay and gas chromatography – positive ion chemical ionization–mass spectrometry. J. Anal. Toxicol.28,86–93 (2004).
    • 204  Liberty HJ, Johnson BD, Fortner N, Randolph D. Detecting crack and other cocaine use with fastpatches. Addict. Biol. 8,191–200 (2003).
    • 205  Kidwell DA, Kidwell JD, Shinohara F et al. Comparison of daily urine, sweat, and skin swabs among cocaine users. Forensic Sci. Int.133,63–78 (2003).
    • 206  Winhusen TM, Somoza EC, Singal B, Kim S, Horn PS, Rotrosen J. Measuring outcome in cocaine clinical trials: a comparison of sweat patches with urine toxicology and participant self-report. Addiction98,317–324 (2003).
    • 207  Moody DE, Cheever ML. Evaluation of immunoassays for semiquantitative detection of cocaine and metabolites or heroin and metabolites in extracts of sweat patches. J. Anal. Toxicol.25,190–197 (2001).
    • 208  García-Algar O, Vall Combelles O, Puig Sola C et al. Prenatal exposure to drugs of abuse using meconium analysis in a low socioeconomic population in Barcelona. Na. Pediatr.70,145–152 (2009).
    • 209  Kacinko SL, Jones HE, Johnson RE, Choo RE, Huestis MA. Correlations of maternal buprenorphine dose, buprenorphine, and metabolite concentrations in meconium with neonatal outcomes. Clin. Pharmacol. Ther.84,604–612 (2008).
    • 210  López P, Bermejo AM, Tabernero MJ, Fernández P, Alvarez I. Determination of cocaine and heroin with their respective metabolites in meconium by gas chromatography–mass spectrometry. J. Appl. Toxicol.27,464–471 (2007).
    • 211  Pichini S, Puig C, Zuccaro P et al. Assessment of exposure to opiates and cocaine during pregnancy in a Mediterranean city: preliminary results of the ‘‘Meconium Project’’. Forensic Sci. Int.153,59–65 (2005).
    • 212  Pichini S, Marchei E, Pacifici R, Pellegrini M, Lozano J, García-Algar O. Application of a validated high-performance liquid chromatography–mass spectrometry assay to the analysis of m- and p-hydroxybenzoylecgonine in meconium. J. Chromatogr. B820,151–156 (2005).
    • 213  Hajnal BL, Ferriero DM, Partridge JC, Dempsey DA, Good WV. Is exposure to cocaine or cigarette smoke during pregnancy associated with infant visual abnormalities? Dev. Med. Child. Neurol.46,520–525 (2004).
    • 214  Pichini S, Pacifici R, Pellegrini M et al. Development and validation of a liquid chromatography–mass spectrometry assay for the determination of opiates and cocaine in meconium. J. Chromatogr.B794,281–292 (2003).
    • 215  Vinner E, Vignau J, Thibault D et al. Hair analysis of opiates in mothers and newborns for evaluating opiate exposure during pregnancy. Forensic Sci. Int.133,57–62 (2003).
    • 216  Bar-Oz B, Klein J, Karaskov T, Koren G. Comparison of meconium and neonatal hair analysis for detection of gestational exposure to drugs of abuse. Arch. Dis. Child. Fetal. Neonatal Ed.88,F98–F100 (2003).
    • 217  Lester BM, ElSohly M, Wright LL et al. The Maternal Lifestyle Study: drug use by meconium toxicology and maternal self-report. Pediatrics107,309–317 (2001).
    • 218  Xia Y, Wang P, Bartlett MG, Solomon HM, Busch KL. An LC–MS–MS method for the comprehensive analysis of cocaine and cocaine metabolites in meconium. Anal. Chem.72,764–771 (2000).
    • 219  ElSohly MA, Kopycki W, Feng S, Murphy TP. Identification and analysis of the major metabolites of cocaine in meconium. J. Anal. Toxicol.23,446–451 (1999).
    • 220  ElSohly MA, Stanford DF, Murphy TP et al. Immunoassay and GC–MS procedures for the analysis of drugs of abuse in meconium. J. Anal. Toxicol.23,436–445 (1999).
    • 221  Ali EM, Edwards HG, Hargreaves MD, Scowen IJ. Raman spectroscopic investigation of cocaine hydrochloride on human nail in a forensic context. Anal. Bioanal. Chem.390,1159–1166 (2008).
    • 222  Stimpfl T, Reichel S. Distribution of drugs of abuse within specific regions of the human brain. Forensic Sci. Int.170,179–182 (2007).
    • 223  Pellegrini M, Casá A, Marchei E et al. Development and validation of a gas chromatography-mass spectrometry assay for opiates and cocaine in human teeth. J. Pharm Biomed. Anal.40,662–668 (2006).
    • 301  European Monitoring Centre for Drugs and Drug Addiction. 2008 Annual Report on the state of drugs problem in Europe (2008) www.emcdda.europa.eu/publications/annual-report/2008