We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Published Online:https://doi.org/10.4155/tde.14.111

Due mainly to their poor stability and short plasma half-life, peptides are usually administered by injection, often several times daily. Injectable sustained-release formulations of peptides based on biodegradable polymer microparticles or implants early demonstrated the power of drug delivery technologies to enhance patient adherence and convenience, and increase safety and efficacy. Injectable sustained-release formulations are likely to remain a significant part of new peptide products. However, a new generation of technologies that enable solvent-free formulations and manufacturing processes, injection through narrow gauge needles and ready-to-use presentations will be increasingly used. In addition, the tremendous developments in noninvasive routes of delivery are likely to result in more and more peptides being delivered by the oral, transdermal, nasal or inhalation routes.

Papers of special note have been highlighted as: • of interest; •• of considerable interest

References

  • 1 Shive M, Anderson J. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 28(1), 5–24 (1997).
  • 2 Hoffman AS. The origins and evolution of ‘controlled’ drug delivery systems. J. Control. Release 132(3), 153–163 (2008).
  • 3 Klose D, Siepmann F, Elkharraz K, Siepmann J. PLGA-based drug delivery systems: importance of the type of drug and device geometry. Int. J. Pharm. 354(1–2), 95–103 (2007).
  • 4 Tracy M.A, Ward K.L, Firouzabadian L, Wang Y, Dong N, Qian R, Zhang Y. Factors affecting the degradation rate of poly(lactide-co-glycolide) microspheres in vivo and in vitro. Biomaterials 20(11), 1057–1062 (1999).
  • 5 Wischke C, Schwendeman SP. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int. J. Pharm. 364(2), 298–327 (2008).
  • 6 Kim HK, Chung HJ, Park TG. Biodegradable polymeric microspheres with ‘open/closed’ pores for sustained release of human growth hormone. J. Control. Release 112(2), 167–174 (2006).
  • 7 Lewis AL, Illum L. Formulation strategies for sustained release of proteins. Ther. Deliv. 1(3), 457–479 (2010).
  • 8 Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21(23), 2475–2490 (2000).
  • 9 Davies OR, Lewis AL, Whitaker MJ, Tai H, Shakesheff KM, Howdle SM. Applications of supercritical CO2 in the fabrication of polymer systems for drug delivery and tissue engineering. Adv. Drug Deliv. Rev. 60(3), 373–387 (2008).
  • 10 Kranz H, Bodmeier R. Structure formation and characterization of injectable drug loaded biodegradable devices: in situ implants versus in situ microparticles. Eur. J. Pharm. Sci. 34(2–3), 164–172 (2008).
  • 11 Luan X, Bodmeier R. Modification of the tri-phasic drug release pattern of leuprolide acetate-loaded poly(lactide-co-glycolide) microparticles. Eur. J. Pharm. Biopharm. 63(2), 205–214 (2006).
  • 12 European Commission REACH Legislation. http://ec.europa.eu/enterprise/sectors/chemicals/reach/index_en.htm.
  • 13 Siepmann J, Faisant N, Akiki J, Richard J, Benoit JP. Effect of the size of biodegradable microparticles on drug release: experiment and theory. J. Control. Release 96(1), 123–134 (2004).• Importance of poly(lactic-co-glycolic)acid (PLGA) microparticle geometry on control of drug release.
  • 14 Klose D, Siepmann F, Elkharraz K, Krenzlin S, Siepmann J. How porosity and size affect the drug release mechanisms from PLGA-based microparticles. Int. J. Pharm. 314(2), 198–206 (2006).
  • 15 Faisant N, Siepmann J, Richard J, Benoit J. Mathematical modeling of drug release from bioerodible microparticles: effect of gamma-irradiation. Eur. J. Pharm. Biopharm. 56(2), 271–279 (2003).
  • 16 Vladisavljević GT, Williams RA. Recent developments in manufacturing emulsions and particulate products using membranes. Adv. Colloid Interface Sci. 113(1), 1–20 (2005).
  • 17 Joanicot M, Ajdari A. Applied physics: droplet control for microfluidics. Science 309(5736), 887–888 (2005).
  • 18 Björnmalm M, Yan Y, Caruso F. Engineering and evaluating drug delivery particles in microfluidic devices. J. Control. Release doi:10.1016/j.jconrel.2014.04.030 (2014) (Epub ahead of print).
  • 19 Bocanegra R, José Luis Sampedro AG-C, Marquez M. Monodisperse structured multi-vesicle microencapsulation using flow-focusing and controlled disturbance. J. Microencapsul. 22(7), 745–759 (2005).
  • 20 Pérez C, Castellanos IJ, Costantino HR, Al-Azzam W, Griebenow K. Recent trends in stabilizing protein structure upon encapsulation and release from bioerodible polymers. J. Pharm. Pharmacol. 54(3), 301–313 (2002).
  • 21 Hao J, Whitaker MJ, Wong B, Serhatkulu G, Shakesheff KM, Howdle SM. Plasticization and spraying of poly (DL-lactic acid) using supercritical carbon dioxide: control of particle size. J. Pharm. Sci. 93(4), 1083–1090 (2004).
  • 22 Whitaker MJ, Hao J, Davies OR et al. The production of protein-loaded microparticles by supercritical fluid enhanced mixing and spraying. J. Control Release 101(1–3), 85–92 (2005).
  • 23 Jordan F, Naylor A, Kelly CA, Howdle SM, Lewis A, Illum L. Sustained release hGH microsphere formulation produced by a novel supercritical fluid technology: in vivo studies. J. Control. Release 141(2), 153–160 (2010).
  • 24 Pini R, Storti G, Mazzotti M, Tai H, Shakesheff KM, Howdle SM. Sorption and swelling of poly (DL -lactic acid) and poly (lactic-co-glycolic acid) in supercritical CO2. Macromol. Symp. 259(1), 197–202 (2007).
  • 25 Chen Yulin, Ping Ma, Shuangying Gui. Cubic and hexagonal liquid crystals as drug delivery systems. Biomed Res. Int. doi: 10.1155/2014/815981 (2014) (Epub ahead of print).
  • 26 Norling Tomas, Lading Pia, Engström Sven, Larsson Kåre, Niels Krog SSN. Formulation of a drug delivery system based on a mixture of monoglycerides and triglycerides for use in the treatment of periodontal disease. J. Clin. Periodontol. 19(9), 687–692 (1992).
  • 27 Ruiz-Hornillos J, Henríquez-Santana A, Moreno-Fernández A, González IG, Sánchez SR. Systemic allergic dermatitis caused by the solvent of Eligard. Contact Dermatitis 61(6), 355–356 (2009).
  • 28 Asmus LR, Tille J-C, Kaufmann B et al. In vivo biocompatibility, sustained-release and stability of triptorelin formulations based on a liquid, degradable polymer. J. Control. Release 165(3), 199–206 (2013).
  • 29 Heller J, Barr J. Poly(ortho esters): from concept to reality. Biomacromolecules 5(5), 1625–1632 (2004).
  • 30 Einmahl S, Capancioni S, Schwach-Abdellaoui K, Moeller M, Behar-Cohen F, Gurny R. Therapeutic applications of viscous and injectable poly(ortho esters). Adv. Drug Deliv. Rev. 53(1), 45–73 (2001).
  • 31 Heller J, Barr J, Ng SY, Abdellauoi KS, Gurny R. Poly(ortho esters): synthesis, characterization, properties and uses. Adv. Drug Deliv. Rev. 54(7), 1015–1039 (2002).
  • 32 Heller J, Barr J, Ng SY et al. Poly(ortho esters): their development and some recent applications. Eur. J. Pharm. Biopharm. 50(1), 121–128 (2000).
  • 33 Einmahl S, Zignani M, Varesio E et al. Concomitant and controlled release of dexamethasone and 5-fluorouracil from poly(ortho ester). Int. J. Pharm. 185(2), 189–198 (1999).
  • 34 Chan Y-P, Meyrueix R, Kravtzoff R, Nicolas F, Lundstrom K. Review on Medusa®: a polymer-based sustained release technology for protein and peptide drugs. Expert Opin. Drug Deliv. 4(4), 441–451 (2007).
  • 35 Valéry C, Paternostre M, Robert B et al. Biomimetic organization: octapeptide self-assembly into nanotubes of viral capsid-like dimension. Proc. Natl. Acad. Sci. USA 100(18), 10258–10262 (2003).
  • 36 Valéry C, Artzner F, Robert B et al. Self-association process of a peptide in solution: from beta-sheet filaments to large embedded nanotubes. Biophys. J. 86(4), 2484–2501 (2004).• Investigations into the mechanism of peptide self-assembly into nanotubes useful for injectable sustained release.
  • 37 Valéry C, Pouget E, Pandit A et al. Molecular origin of the self-assembly of lanreotide into nanotubes: a mutational approach. Biophys. J. 94(5), 1782–1795 (2008).
  • 38 Pouget E, Fay N, Dujardin E et al. Elucidation of the self-assembly pathway of lanreotide octapeptide into beta-sheet nanotubes: role of two stable intermediates. J. Am. Chem. Soc. 132(12), 4230–4241 (2010).
  • 39 Van Grondelle W, Iglesias CL, Coll E et al. Spontaneous fibrillation of the native neuropeptide hormone Somatostatin-14. J. Struct. Biol. 160(2), 211–223 (2007).
  • 40 Maji SK, Schubert D, Rivier C, Lee S, Rivier JE, Riek R. Amyloid as a depot for the formulation of long-acting drugs. PLoS Biol. 6(2), e17 (2008).
  • 41 Reynolds Lucy, McKee M. Serve the people or close the sale? Profit-driven overuse of injections and infusions in China's market-based healthcare system. Int. J. Health Plann. Manage. 26(4), 449–470 (2011).
  • 42 Fransén N, Bredenberg S, Björk E. Clinical study shows improved absorption of desmopressin with novel formulation. Pharm. Res. 26(7), 1618–1625 (2009).• Comparison of pharmacokinetics and patient acceptability of nasal and oral peptide formulations.
  • 43 Brayden DJ, Maher S. Oral absorption enhancement: taking the next steps in therapeutic delivery. Ther. Deliv. 1(1), 5–9 (2010).
  • 44 Welling SH, Hubálek F, Jacobsen J, Brayden DJ, Rahbek UL, Buckley ST. The role of citric acid in oral peptide and protein formulations: relationship between calcium chelation and proteolysis inhibition. Eur. J. Pharm. Biopharm. 86(3), 544–551 (2014).
  • 45 Rosenmayr-Templeton L. The oral delivery of peptides and proteins: established versus recently patented approaches. Pharm. Pat. Anal. 2(1), 125–145 (2013).
  • 46 Binkley N, Bolognese M, Sidorowicz-Bialynicka A et al. A Phase III trial of the efficacy and safety of oral recombinant calcitonin: the oral calcitonin in postmenopausal osteoporosis (ORACAL) trial. J. Bone Miner. Res. 27(8), 1821–1829 (2012).•• Clinicially demonstrated increased efficacy of the oral peptide compared with the marketed nasal spray.
  • 47 Mehta N. Clinical development of an oral formulation of recombinant salmon calcitonin At: The Peptide Conference 2010. Cambridge, UK 30–31 March, 2010.
  • 48 Henriksen K, Andersen JR, Riis BJ, Mehta N, Tavakkol R, Alexandersen P, Byrjalsen I, Valter I, Nedergaard BS, Teglbjaerg CS, Stern W, Sturmer A, Mitta S, Nino AJ, Fitzpatrick LA, Christiansen CKM. Evaluation of the efficacy, safety and pharmacokinetic profile of oral recombinant human parathyroid hormone [rhPTH(1–31)NH(2)] in postmenopausal women with osteoporosis. Bone 53(1), 160–166 (2013).
  • 49 Tuvia S, Atsmon J, Teichman SL et al. Oral octreotide absorption in human subjects: comparable pharmacokinetics to parenteral octreotide and effective growth hormone suppression. J. Clin. Endocrinol. Metab. 97(7), 2362–2369 (2012).
  • 50 Tuvia S, Salama P, Weinstein I et al. OR14,80 OctreolinTM, a safe oral alternative for parenteral octreotide treatment. Growth Horm. IGF Res. 20(Suppl.1), S35–S36 (2010).
  • 51 Merrion Pharmacueticals. www.merrionpharma.com/content/investors/archive/2014/290514.asp.
  • 52 Business Standard. Biocon's oral insulin project expected to be delayed further. www.business-standard.com/article/companies/biocon-s-oral-insulin-project-expected-to-be-delayed-further-113122300378_1.html.
  • 53 Eldor R, Arbit E, Corcos A, Kidron M. Glucose-reducing effect of the ORMD-0801 oral insulin preparation in patients with uncontrolled type 1 diabetes: a pilot study. PLoS ONE 8(4), e59524 (2013).
  • 54 Related T, Events A. The GTC Diabetes Summit. Oramed pharmaceuticals presents data from Phase IIA trial with ORMD-0801 in Type 2 diabetes. At: the 2014 Diabetes Summit. 2014, Cambridge Massachusetts, USA April 24, 2014.
  • 55 Gutniak MK, Larsson H, Heiber SJ, Juneskans OT, Holst JJ, Ahrén B. Potential therapeutic levels of glucagon-like peptide I achieved in humans by a buccal tablet. Diabetes Care 19(8), 843–848 (1996).
  • 56 Gutniak MK, Larsson H, Sanders SW, Juneskans O, Holst JJ, Ahrén B. GLP-1 tablet in Type 2 diabetes in fasting and postprandial conditions. Diabetes Care 20(12), 1874–1879 (1997).
  • 57 Damme Van, Oosterhuis-Kafeja F, Van der Wielen M, Almagor Y, Sharon O, Levin Y. Safety and efficacy of a novel microneedle device for dose sparing intradermal influenza vaccination in healthy adults. Vaccine 14(27), 454–459 (2009).
  • 58 Hafner R, Couroux P, Armstrong K, Patel D, Larche M, Haumann B. Two year persistent treatment effect in reducing nasal symptoms of cat allergy after 4 doses of Cat-PAD, the first in a new class of synthetic peptide immuno-regulatory epitopes. Clin. Transl. Allergy 3(Suppl. 2), doi:10.1186/2045-7022-3-S2-O7 (2013).
  • 59 Radius Pharmaceuticals. Radius announces topline data from Phase II of BA058. http://radiuspharm.mwnewsroom.com/press-releases/radius-announces-positive-topline-data-from-phase–1080683.
  • 60 Zosano Pharmaceuticals. Zosano pharma, Inc., announces completes positive end-of-phase 2 meeting with FDA regarding zp- pth patch for osteoporosis. www.zosanopharma.com/index.php/Press-Release-12–19–2008.html.
  • 61 Daddona PE, Matriano JA, Mandema J, Maa YF. Parathyroid hormone (1–34)-coated microneedle patch system: clinical pharmacokinetics and pharmacodynamics for treatment of osteoporosis. Pharm. Res. 28(1), 159–165 (2011).•• Demonstrated increased efficacy in man through switching from injectable parathyroid hormone (PTH) to transdermal PTH.
  • 62 Maggio ET. Intravail TM: highly effective intranasal delivery of peptide and protein drugs. Expert Opin. Drug Deliv. 3(4), 529–539 (2006).
  • 63 Eddy P, Krause D, Merutka G, Macdonald B. Intranasal (IN) pharmacokinetics (PK) and bioavailability of ZT-031: a novel parathyroid hormone (PTH) analog. Presented at: ASBMR 30 Annual Meeting, 16 September 2009.
  • 64 Lewis AL, Jordan F, Illum L. CriticalSorbTM: enabling systemic delivery of macromolecules via the nasal route. Drug Deliv. Transl. Res. 3(1), 26–32 (2012).
  • 65 Illum L. Nasal drug delivery: recent developments and future prospects. J. Control. Release 161(2), 254–263 (2012).
  • 66 Bzik V, Lewis A, Illum L, Brayden DJ. CriticalSorb promotes permeation of flux markers across rat colonic mucosae. Pharm. Res. 29(9), 2543–2554 (2012).
  • 67 Critical Pharmaceuticals. Critical pharmaceuticals start dosing in Phase I on nasal PTH. www.criticalpharmaceuticals.com/latest/news/cp046-start-clinical.
  • 68 Hrkach J, Von Hoff D, Mukkaram Ali M et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med. 4(128), 128–139 (2012).
  • 69 Gaillard PJ, Appeldoorn CCM, Dorland R et al. Pharmacokinetics, brain delivery, and efficacy in brain tumor-bearing mice of glutathione pegylated liposomal doxorubicin (2B3–101). PLoS ONE 9(1), e82331 (2014).