We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Research Article

An LC-MRM method for measuring intestinal triglyceride assembly using an oral stable isotope-labeled fat challenge

    Xiaofang Li

    Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, USA

    ,
    Elizabeth J Parks

    Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA

    ,
    David G McLaren

    Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, USA

    ,
    Jennifer E Lambert

    Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA

    ,
    Helene L Cardasis

    Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, USA

    ,
    Derek L Chappell

    Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, USA

    ,
    Thomas McAvoy

    Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, USA

    ,
    Gino Salituro

    Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, USA

    ,
    Achilles Alon

    Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, USA

    ,
    Justin Dennie

    Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, USA

    ,
    Manu Chakravarthy

    Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, USA

    ,
    Sudha S Shankar

    Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, USA

    ,
    Omar F Laterza

    Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, USA

    &
    Michael E Lassman

    *Author for correspondence:

    E-mail Address: michael_lassman@merck.com

    Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, USA

    Published Online:https://doi.org/10.4155/bio-2016-0024

    Aim: A traditional oral fatty acid challenge assesses absorption of triacylglycerol (TG) into the periphery through the intestines, but cannot distinguish the composition or source of fatty acid in the TG. Stable isotope-labeled tracers combined with LC-MRM can be used to identify and distinguish TG synthesized with dietary and stored fatty acids. Results: Concentrations of three abundant TGs (52:2, 54:3 and 54:4) were monitored for incorporation of one or two 2H11-oleate molecules per TG. This method was subjected to routine assay validation and meets typical requirements for an assay to be used to support clinical studies. Conclusion: Calculations for the fractional appearance rate of TG in plasma are presented along with the intracellular enterocyte precursor pool for 12 study participants.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Chavez-Jauregui RN, Mattes RD, Parks EJ. Dynamics of fat absorption and effect of sham feeding on postprandial lipema. Gastroenterology 139(5), 1538–1548 (2010).
    • 2 Overgaard AJ, Hansen HG, Lajer M et al. Plasma proteome analysis of patients with Type 1 diabetes with diabetic nephropathy. Proteome. Sci. 8, 4 (2010).
    • 3 Rader DJ. Molecular regulation of HDL metabolism and function: implications for novel therapies. J. Clin. Invest 116(12), 3090–3100 (2006).
    • 4 Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362(6423), 801–809 (1993).
    • 5 Barrows BR, Parks EJ. Contributions of different fatty acid sources to very low-density lipoprotein-triacylglycerol in the fasted and fed states. J. Clin. Endocrinol. Metab. 91(4), 1446–1452 (2006).
    • 6 Bojic LA, McLaren DG, Shah V, Previs SF, Johns DG, Castro-Perez JM. Lipidome of atherosclerotic plaques from hypercholesterolemic rabbits. Int. J. Mol. Sci. 15(12), 23283–23293 (2014). • Demonstration of isotope tracers to distinguish the source of fatty acid incorporated into triacylglycerol.
    • 7 Castro-Perez JM, Kamphorst J, DeGroot J et al. Comprehensive LC–MS E lipidomic analysis using a shotgun approach and its application to biomarker detection and identification in osteoarthritis patients. J. Proteome. Res. 9(5), 2377–2389 (2010).
    • 8 Grundy SM, Mok HY, Zech L, Steinberg D, Berman M. Transport of very low density lipoprotein triglycerides in varying degrees of obesity and hypertriglyceridemia. J. Clin. Invest. 63(6), 1274–1283 (1979).
    • 9 Cohn JS, Wagner DA, Cohn SD, Millar JS, Schaefer EJ. Measurement of very low density and low density lipoprotein apolipoprotein (Apo) B-100 and high density lipoprotein Apo A-I production in human subjects using deuterated leucine. Effect of fasting and feeding. J. Clin. Invest. 85(3), 804–811 (1990).
    • 10 Clapperton AT, Coward WA, Bluck LJ. Measurement of insulin sensitivity indices using 13C-glucose and gas chromatography/combustion/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 16(21), 2009–2014 (2002).
    • 11 Wolfe RR. Radioactive and Stable Isotope Tracers in Biomedicine: Principles and Practice of Kinetic Analysis. Wiley-Blackwell, NJ, USA (1992). • Seminal work on the use of stable isotope tracers to interrogate biology.
    • 12 Castro-Perez J, Previs SF, McLaren DG et al. In vivo D2O labeling to quantify static and dynamic changes in cholesterol and cholesterol esters by high resolution LC/MS. J. Lipid Res. 52(1), 159–169 (2011).
    • 13 Lemieux S, Patterson BW, Carpentier A, Lewis GF, Steiner G. A stable isotope method using a [(2)H(5)]glycerol bolus to measure very low density lipoprotein triglyceride kinetics in humans. J. Lipid Res. 40(11), 2111–2117 (1999).
    • 14 Magkos F, Patterson BW, Mittendorfer B. Reproducibility of stable isotope-labeled tracer measures of VLDL-triglyceride and VLDL-apolipoprotein B-100 kinetics. J. Lipid Res. 48(5), 1204–1211 (2007).
    • 15 Parks EJ, Hellerstein MK. Thematic review series: patient-oriented research. Recent advances in liver triacylglycerol and fatty acid metabolism using stable isotope labeling techniques. J. Lipid Res. 47(8), 1651–1660 (2006). • A review of techniques used to address the problem of measuring intracellular isotopic labeling via extracellular sampling.
    • 16 Morrison WR, Smith LM. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J. Lipid Res. 5, 600–608 (1964).
    • 17 Turner SM, Murphy EJ, Neese RA et al. Measurement of TG synthesis and turnover in vivo by 2H2O incorporation into the glycerol moiety and application of MIDA. Am. J. Physiol. Endocrinol. Metab. 285(4), E790–E803 (2003). • A demonstration of the use of mass isotopomer distribution analysis calculations for triacylglycerols, but with a different type of tracer than is used in this study.
    • 18 McLaren DG, He T, Wang SP et al. The use of stable-isotopically labeled oleic acid to interrogate lipid assembly in vivo: assessing pharmacological effects in preclinical species. J. Lipid Res. 52(6), 1150–1161 (2011). •• Contains much of the background work that contributed to this clinical study.
    • 19 McLaren DG, Cardasis HL, Stout SJ et al. Use of [13C18] oleic acid and mass isotopomer distribution analysis to study synthesis of plasma triglycerides in vivo: analytical and experimental considerations. Anal. Chem. 85(13), 6287–6294 (2013).
    • 20 McLaren DG, Wang SP, Stout SJ et al. Tracking fatty acid kinetics in distinct lipoprotein fractions in vivo: a novel high-throughput approach for studying dyslipidemia in rodent models. J. Lipid Res. 54(1), 276–281 (2013).
    • 21 Wittman C. Fluxome analysis using GC–MS. Microb. Cell. Fact. 6, 1–17 (2007).
    • 22 Hellerstein MK, Neese RA. Mass isotopomer distribution analysis at eight years: theoretical, analytic, and experimental considerations. Am. J. Physiol 276(6 Pt 1), E1146–E1170 (1999). •• An excellent description of mass isotopomer distribution analysis calculation and how they can be applied.
    • 23 Morgantini C, Xiao C, Dash S, Lewis GF. Dietary carbohydrates and intestinal lipoprotein production. Curr. Opin. Clin. Nutr. Metab. Care 17(4), 355–359 (2014).
    • 24 Veilleux A, Grenier E, Marceau P, Carpentier AC, Richard D, Levy E. Intestinal lipid handling: evidence and implication of insulin signaling abnormalities in human obese subjects. Arterioscler. Thromb. Vasc. Biol. 34(3), 644–653 (2014).
    • 25 Chen HC, Farese RV Jr. Inhibition of triglyceride synthesis as a treatment strategy for obesity: lessons from DGAT1-deficient mice. Arterioscler. Thromb. Vasc. Biol. 25(3), 482–486 (2005).
    • 26 Rizzo M. Lomitapide, a microsomal triglyceride transfer protein inhibitor for the treatment of hypercholesterolemia. IDrugs 13(2), 103–111 (2010).
    • 27 Sahebkar A, Watts GF. New LDL-cholesterol lowering therapies: pharmacology, clinical trials, and relevance to acute coronary syndromes. Clin. Ther. 35(8), 1082–1098 (2013).
    • 28 Smith SJ, Cases S, Jensen DR et al. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nat. Genet. 25(1), 87–90 (2000).
    • 29 Subauste A, Burant CF. DGAT: novel therapeutic target for obesity and Type 2 diabetes mellitus. Curr. Drug Targets Immune Endocr. Metabol. Disord. 3(4), 263–270 (2003).
    • 30 Chandler CE, Wilder DE, Pettini JL et al. CP-346086: an MTP inhibitor that lowers plasma cholesterol and triglycerides in experimental animals and in humans. J. Lipid Res. 44(10), 1887–1901 (2003).
    • 31 Quehenberger O, Armando AM, Brown AH et al. Lipidomics reveals a remarkable diversity of lipids in human plasma. J. Lipid Res. 51(11), 3299–3305 (2010).
    • 32 Hoofnagle AN, Becker JO, Oda MN, Cavigiolio G, Mayer P, Vaisar T. Multiple-reaction monitoring-mass spectrometric assays can accurately measure the relative protein abundance in complex mixtures. Clin. Chem. 58(4), 777–781 (2012).
    • 33 McQuaid SE, Hodson L, Neville MJ et al. Downregulation of adipose tissue fatty acid trafficking in obesity: a driver for ectopic fat deposition? Diabetes 60(1), 47–55 (2011).
    • 34 Zambon A, Hashimoto SI, Brunzell JD. Analysis of techniques to obtain plasma for measurement of levels of free fatty acids. J. Lipid Res. 34(6), 1021–1028 (1993).
    • 35 Lambert JE, Parks EJ. Postprandial metabolism of meal triglyceride in humans. Biochim. Biophys. Acta 1821(5), 721–726 (2012).
    • 36 Lambert JE, Parks EJ. Getting the label in: practical research strategies for tracing dietary fat. Int. J. Obes. 2, S43–S50 (2012).
    • 37 Timlin MT, Barrows BR, Parks EJ. Increased dietary substrate delivery alters hepatic fatty acid recyclingin healthy subjects. Diabetes 54(9), 2694–2701 (2005).