We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

An overview of imidazole and its analogues as potent anticancer agents

    Salik Abdullah

    *Author for correspondence:

    E-mail Address: abdullahsalik07@gmail.com

    Department of Pharmaceutical Sciences, Birla Institute of Technology, Mesra, Jharkhand, 835215, India

    &
    Swastika Ganguly

    Department of Pharmaceutical Sciences, Birla Institute of Technology, Mesra, Jharkhand, 835215, India

    Published Online:https://doi.org/10.4155/fmc-2023-0020

    The quest for novel, physiologically active imidazoles remains an exciting topic of research among medicinal chemists. The imidazole ring is a five-membered aromatic heterocycle that is found in both natural and synthesized compounds. Multiple anticancer drug classes are currently available on the market, but concerns including toxicity, limited efficacy and solubility have lowered the overall therapeutic index. Therefore, the hunt for new potential chemotherapeutic agents persists. The development of imidazole as a reliable and safer alternative to anticancer treatment is generating much attention among experts. Tubulin or microtubule polymerization inhibition and changes in the structure and function of DNA, VEGF, topoisomerase, kinases, histone deacetylases and certain other proteins that affect gene expression are among the putative targets.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Reichert JM, Wenger JB. Development trends for new cancer therapeutics and vaccines. Drug Discov. Today 13(1–2), 30–37 (2008).
    • 2. Ali I, Lone MN, Aboul-Enein HY. Imidazoles as potential anticancer agents. MedChemComm 8(9), 1742–1773 (2017). • Defines the role of imdazole and fused imidazole anaologues as potential anticancer agents.
    • 3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J. Clin. 70(1), 7–30 (2020).
    • 4. Ferlay J, Ervik M, Lam F et al. Global Cancer Observatory: Cancer Today. International Agency for Research on Cancer, Lyon, France (2020). https://gco.iarc.fr/today • Gives a statistical analysis of deaths occurring due to cancer and future statistics related to cancer deaths.
    • 5. Tsimberidou A-M. Targeted therapy in cancer. Cancer Chemother. Pharmacol. 76(6), 1113–1132 (2015).
    • 6. Seebacher NA, Stacy AE, Porter GM, Merlot AM. Clinical development of targeted and immune based anti-cancer therapies. J. Exp. Clin. Cancer Res. 38(1), 156 (2019).
    • 7. Rana A, Alex J, Chauhan M, Joshi G, Kumar R. A review on pharmacophoric designs of antiproliferative agents. Med. Chem. Res. 24, 903–920 (2014).
    • 8. Vitaku E, Smith DT, Njardarson JT. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals: miniperspective. J. Med. Chem. 57(24), 10257–10274 (2014).
    • 9. Vitaku E, Smith DT, Njardarson JT. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57(24), 10257–10274 (2014).
    • 10. Li X-L, Hu Y-J, Wang H, Yu B-Q, Yue H-L. Molecular spectroscopy evidence of berberine binding to DNA: comparative binding and thermodynamic profile of intercalation. Biomacromolecules 13(3), 873–880 (2012).
    • 11. Alniss HY, Anthony NG, Khalaf AI et al. Rationalising sequence selection by ligand assemblies in the DNA minor groove: the case for thiazotropsin A. Chem. Sci. 3(3), 711–722 (2012).
    • 12. Ketron AC, Denny WA, Graves DE, Osheroff N. Amsacrine as a topoisomerase II poison: importance of drug-DNA interactions. Biochemistry 51(8), 1730–1739 (2012).
    • 13. Świderski G, Łaźny R, Sienkiewicz M et al. Synthesis, spectroscopic, and theoretical study of copper and cobalt complexes with dacarbazine. Materials (Basel) 14(12), 12 (2021).
    • 14. Groessl M, Reisner E, Hartinger CG et al. Structure-activity relationships for NAMI-A-type complexes (HL)[trans-RuCl4L(S-dmso)ruthenate(III)] (L = imidazole, indazole, 1,2,4-triazole, 4-amino-1,2,4-triazole, and 1-methyl-1,2,4-triazole): aquation, redox properties, protein binding, and antiproliferative activity. J. Med. Chem. 50(9), 2185–2193 (2007).
    • 15. Zhang L, Peng X, Damu GLV, Geng R, Zhou C. Comprehensive review in current developments of imidazole-based medicinal chemistry. Med. Res. Rev. 34(2), 340–437 (2014).
    • 16. Sharma P, Larosa C, Antwi J, Govindarajan R, Werbovetz KA. Imidazoles as potential anticancer agents: an update on recent studies. Molecules 26(14), 4213 (2021).
    • 17. Molina P, Tárraga A, Otón F. Imidazole derivatives: a comprehensive survey of their recognition properties. Org. Biomol. Chem. 10(9), 1711–1724 (2012).
    • 18. Kanawaade P, Sharma N, Pandhare R, Kanawade MP. A review on: imidazole derivatives as a multifunctional moiety. Eur. J. Mol. Clin. Med. 10(01), 4382–4405 (2023).
    • 19. Aleksandrova EV, Kravchenko AN, Kochergin PM. Properties of haloimidazoles (review). Chem. Heterocycl. Compd 47(3), 261 (2011).
    • 20. Narasimhan B, Sharma D, Kumar P. Biological importance of imidazole nucleus in the new millennium. Med. Chem. Res. 20, 1119–1140 (2010).
    • 21. Boiani M, González M. Imidazole and benzimidazole derivatives as chemotherapeutic agents. Mini Rev. Med. Chem. 5(4), 409–424 (2005).
    • 22. Tolomeu HV, Fraga CAM. Imidazole: synthesis, functionalization and physicochemical properties of a privileged structure in medicinal chemistry. Molecules 28(2), 838 (2023).
    • 23. Debus H. Ueber die einwirkung des ammoniaks auf glyoxal. Eur. J. Org. Chem. 107(2), 199–208 (1858).
    • 24. Zheng X, Ma Z, Zhang D. Synthesis of imidazole-based medicinal molecules utilizing the van leusen imidazole synthesis. Pharmaceuticals 13(3), 37 (2020).
    • 25. Akritopoulou-Zanze I. Isocyanide-based multicomponent reactions in drug discovery. Curr. Opin. Chem. Biol. 12(3), 324–331 (2008).
    • 26. Lujan-Montelongo JA, Estevez AO, Fleming FF. Alkyl sulfinates: formal nucleophiles for synthesizing TosMIC analogs. Eur. J. Org. Chem. 2015(7), 1602–1605 (2015).
    • 27. Mathiyazhagan AD, Anilkumar G. Recent advances and applications of p-toluenesulfonylmethyl isocyanide (TosMIC). Org. Biomol. Chem. 17(28), 6735–6747 (2019).
    • 28. Zhang C, Moran EJ, Woiwode TF, Short KM, Mjalli AMM. Synthesis of tetrasubstituted imidazoles via α-(N-acyl-N-alkylamino)-β-ketoamides on Wang resin. Tetrahedron Lett. 37(6), 751–754 (1996).
    • 29. Balalaie S, Hashemi M, Akhbari M. A novel one-pot synthesis of tetrasubstituted imidazoles under solvent-free conditions and microwave irradiation. Tetrahedron Lett. 44, 1709–1711 (2003).
    • 30. Wolkenberg SE, Wisnoski DD, Leister WH, Wang Y, Zhao Z, Lindsley CW. Efficient synthesis of imidazoles from aldehydes and 1,2-diketones using microwave irradiation. Org. Lett. 6(9), 1453–1456 (2004).
    • 31. Vorbrüggen H, Krolikiewicz K. A simple synthesis of Δ2-oxazolines, Δ2-oxazines, Δ2-thiazolines and Δ2-imidazolines. Tetrahedron Lett. 22(45), 4471–4474 (1981).
    • 32. Pathan M, Paike V, Pachmase P, More S, Ardhapure S, Pawar R. Microwave-assisted facile synthesis of 2-substituted 2-imidazolines. Ark. Arch. Org. Chem. 2006(15), 205–210 (2006).
    • 33. Sharma AK. A convenient approach for the synthesis of imidazole derivatives using microwaves. Der. Pharm. Lett. 6(3), 431–447 (2012).
    • 34. Chakravarthi BVSK, Pathi SS, Goswami MT et al. The miR-124-prolyl hydroxylase P4HA1-MMP1 axis plays a critical role in prostate cancer progression. Oncotarget 5(16), 6654–6669 (2014).
    • 35. Cragg GM, Grothaus PG, Newman DJ. Impact of natural products on developing new anti-cancer agents. Chem. Rev. 109(7), 3012–3043 (2009).
    • 36. Peng X-M, Damu GLV, Zhou C. Current developments of coumarin compounds in medicinal chemistry. Curr. Pharm. Des. 19, 3884–3930 (2013).
    • 37. Montaseri H, Kruger CA, Abrahamse H. Recent advances in porphyrin-based inorganic nanoparticles for cancer treatment. Int. J. Mol. Sci. 21(9), 3358 (2020).
    • 38. Bae SH, Park JH, Choi HG, Kim H, Kim SH. Imidazole antifungal drugs inhibit the cell proliferation and invasion of human breast cancer cells. Biomol. Ther. (Seoul) 26(5), 494–502 (2018).
    • 39. Parker AL, Kavallaris M, McCarroll JA. Microtubules and their role in cellular stress in cancer. Front. Oncol. 4, 153 (2014). •• Provides information related to microtubules, which are important pillars for cell activity, and their alteration's impact on cellular functions; therefore, they are one the most important targets for cancer treatment.
    • 40. Florian S, Mitchison TJ. Anti-microtubule drugs. Mitotic Spindl. Methods Protoc. 1413, 403–421 (2016).
    • 41. Lu Y, Chen J, Xiao M, Li W, Miller DD. An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm. Res. 29(11), 2943–2971 (2012).
    • 42. Shan Y, Zhang J, Liu Z, Wang M, Dong Y. Developments of combretastatin A-4 derivatives as anticancer agents. Curr. Med. Chem. 18(4), 523–538 (2011).
    • 43. Chaudhary A, Pandeya SN, Kumar P et al. Combretastatin a-4 analogs as anticancer agents. Mini Rev. Med. Chem. 7(12), 1186–1205 (2007).
    • 44. Lu Y, Li C-M, Wang Z et al. Discovery of 4-substituted methoxybenzoyl-aryl-thiazole as novel anticancer agents: synthesis, biological evaluation, and structure-activity relationships. J. Med. Chem. 52(6), 1701–1711 (2009).
    • 45. Romagnoli R, Baraldi PG, Cruz-Lopez O et al. Synthesis and antitumor activity of 1,5-disubstituted 1,2,4-triazoles as cis-restricted combretastatin analogues. J. Med. Chem. 53(10), 4248–4258 (2010).
    • 46. Beale TM, Myers RM, Shearman JW et al. Antivascular and anticancer activity of dihalogenated A-ring analogues of combretastatin A-4. MedChemCommun 1(3), 202–208 (2010).
    • 47. Biersack B, Muthukumar Y, Schobert R, Sasse F. Cytotoxic and antivascular 1-methyl-4-(3-fluoro-4-methoxyphenyl)-5-(halophenyl)-imidazoles. Bioorg. Med. Chem. Lett. 21(21), 6270–6273 (2011).
    • 48. Rahimzadeh Oskuei S, Mirzaei S, Reza Jafari-Nik M et al. Design, synthesis and biological evaluation of novel imidazole-chalcone derivatives as potential anticancer agents and tubulin polymerization inhibitors. Bioorg. Chem. 112, doi: 10.1016/j.bioorg.2021.104904 (2021).
    • 49. Lindel T, Jensen PR, Fenical W et al. Eleutherobin, a new cytotoxin that mimics paclitaxel (taxol) by stabilizing microtubules. J. Am. Chem. Soc. 119(37), 8744–8745 (1997).
    • 50. Long BH, Carboni JM, Wasserman AJ et al. Eleutherobin, a novel cytotoxic agent that induces tubulin polymerization, is similar to paclitaxel (Taxol). Cancer Res. 58(6), 1111–1115 (1998).
    • 51. Hamel E, Sackett DL, Vourloumis D, Nicolaou KC. The coral-derived natural products eleutherobin and sarcodictyins A and B: effects on the assembly of purified tubulin with and without microtubule-associated proteins and binding at the polymer taxoid site. Biochemistry 38(17), 5490–5498 (1999).
    • 52. Nicolaou KC, van Delft F, Ohshima T et al. Total synthesis of eleutherobin. Angew. Chemie Int. Ed. Engl. 36(22), 2520–2524 (1997).
    • 53. Nicolaou KC, Kim S, Pfefferkorn J et al. Synthesis and biological activity of sarcodictyins. Angew. Chemie Int. Ed. 37(10), 1418–1421 (1998).
    • 54. LaBarbera DV, Modzelewska K, Glazar AI et al. The marine alkaloid naamidine A promotes caspase-dependent apoptosis in tumor cells. Anticancer Drugs 20(6), 425–436 (2009).
    • 55. Bielawski K, Bielawska A, Poplawska B. Synthesis and cytotoxic activity of novel amidine analogues of bis(2-chloroethyl)amine. Arch. Pharm. (Weinheim) 342(8), 484–490 (2009).
    • 56. Li W-T, Hwang D-R, Song J-S et al. Synthesis and biological evaluation of 2-amino-1-thiazolyl imidazoles as orally active anticancer agents. Invest. New Drugs 30(1), 164–175 (2012).
    • 57. Li L, Quan D, Chen J et al. Design, synthesis, and biological evaluation of 1-substituted -2-aryl imidazoles targeting tubulin polymerization as potential anticancer agents. Eur. J. Med. Chem. 184, doi:10.1016/j.ejmech.2019.111732 (2019) (Epub ahead of print).
    • 58. Wang Q, Arnst KE, Wang Y et al. Structural modification of the 3,4,5-trimethoxyphenyl moiety in the tubulin inhibitor VERU-111 leads to improved antiproliferative activities. J. Med. Chem. 61(17), 7877–7891 (2018).
    • 59. Wang Q, Arnst KE, Wang Y et al. Structure-guided design, synthesis, and biological evaluation of (2-(1H-Indol-3-yl)-1H-imidazol-4-yl)(3,4,5-trimethoxyphenyl) methanone (ABI-231) analogues targeting the colchicine binding site in tubulin. J. Med. Chem. 62(14), 6734–6750 (2019).
    • 60. Bai Z, Liu X, Guan Q et al. 5-(3,4,5-trimethoxybenzoyl)-4-methyl-2-(p-tolyl) imidazol (BZML) targets tubulin and DNA to induce anticancer activity and overcome multidrug resistance in colorectal cancer cells. Chem. Biol. Interact. 315, doi:10.1016/j.cbi.2019.108886 (2020) (Epub ahead of print).
    • 61. Sayeed IB, Vishnuvardhan MVPS, Nagarajan A, Kantevari S, Kamal A. Imidazopyridine linked triazoles as tubulin inhibitors, effectively triggering apoptosis in lung cancer cell line. Bioorg. Chem. 80, 714–720 (2018).
    • 62. Mullagiri K, Nayak VL, Sunkari S et al. New (3-(1H-benzo[d]imidazol-2-yl))/(3-(3H-imidazo[4,5-b]pyridin-2-yl))-(1H-indol-5-yl)(3,4,5-trimethoxyphenyl)methanone conjugates as tubulin polymerization inhibitors. MedChemComm 9(2), 275–281 (2018).
    • 63. Narasimha Rao MP, Nagaraju B, Kovvuri J et al. Synthesis of imidazo-thiadiazole linked indolinone conjugates and evaluated their microtubule network disrupting and apoptosis inducing ability. Bioorg. Chem. 76, 420–436 (2018).
    • 64. Baig MF, Nayak VL, Budaganaboyina P et al. Synthesis and biological evaluation of imidazo[2,1-b]thiazole-benzimidazole conjugates as microtubule-targeting agents. Bioorg. Chem. 77, 515–526 (2018).
    • 65. Donthiboina K, Anchi P, Gurram S et al. Synthesis and biological evaluation of substituted N-(2-(1H-benzo[d]imidazol-2-yl)phenyl)cinnamides as tubulin polymerization inhibitors. Bioorg. Chem. 103, doi:10.1016/j.bioorg.2020.104191 (2020) (Epub ahead of print).
    • 66. Wang Y-T, Shi T-Q, Zhu H-L, Liu C-H. Synthesis, biological evaluation and molecular docking of benzimidazole grafted benzsulfamide-containing pyrazole ring derivatives as novel tubulin polymerization inhibitors. Bioorg. Med. Chem. 27(3), 502–515 (2019).
    • 67. Zhang Q, Hu X, Wan G et al. Discovery of 3-(((9H-purin-6-yl)amino)methyl)-4,6-dimethylpyridin-2(1H)-one derivatives as novel tubulin polymerization inhibitors for treatment of cancer. Eur. J. Med. Chem. 184, doi:10.1016/j.ejmech.2019.111728 (2019) (Epub ahead of print).
    • 68. Hu X, Li L, Zhang Q et al. Design, synthesis and biological evaluation of a novel tubulin inhibitor SKLB0565 targeting the colchicine binding site. Bioorg. Chem. 97, doi:10.1016/j.bioorg.2020.103695 (2020) (Epub ahead of print).
    • 69. Wang L, Zhang J, Wan L, Zhou X, Wang Z, Wei W. Targeting Cdc20 as a novel cancer therapeutic strategy. Pharmacol. Ther. 151, 141–151 (2015).
    • 70. Huang P, Le X, Huang F et al. Discovery of a dual tubulin polymerization and cell division cycle 20 homologue inhibitor via structural modification on apcin. J. Med. Chem. 63(9), 4685–4700 (2020).
    • 71. Coussens L, Parker PJ, Rhee L et al. Multiple, distinct forms of bovine and human protein kinase C suggest diversity in cellular signaling pathways. Science 233(4766), 859–866 (1986).
    • 72. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science 298(5600), 1912–1934 (2002).
    • 73. Bhullar KS, Lagarón NO, McGowan EM et al. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol. Cancer 17(1), 48 (2018). •• The work focuses on kinases that are crucial to cancer carcinogenesis and metastasis as shown by recent advances in our understanding of cancer cell signaling pathways.
    • 74. Bardelli A, Parsons DW, Silliman N et al. Mutational analysis of the tyrosine kinome in colorectal cancers. Science 300(5621), 949 (2003).
    • 75. Ferrara N, Adamis AP. Ten years of anti-vascular endothelial growth factor therapy. Nat. Rev. Drug Discov. 15(6), 385–403 (2016).
    • 76. Gerber H-P, Ferrara N. Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res. 65(3), 671–680 (2005).
    • 77. Albini A, Tosetti F, Li VW, Noonan DM, Li WW. Cancer prevention by targeting angiogenesis. Nat. Rev. Clin. Oncol. 9(9), 498–509 (2012).
    • 78. Liekens S, De Clercq E, Neyts J. Angiogenesis: regulators and clinical applications. Biochem. Pharmacol. 61(3), 253–270 (2001).
    • 79. Yadav L, Puri N, Rastogi V, Satpute P, Sharma V. Tumour angiogenesis and angiogenic inhibitors: a review. J. Clin. Diagn. Res. 9(6), XE01–XE05 (2015).
    • 80. Zhang QX, Magovern CJ, Mack CA, Budenbender KT, Ko W, Rosengart TK. Vascular endothelial growth factor is the major angiogenic factor in omentum: mechanism of the omentum-mediated angiogenesis. J. Surg. Res. 67(2), 147–154 (1997).
    • 81. Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2(12), 1097–1105 (2011).
    • 82. Olsson A-K, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling–in control of vascular function. Nat. Rev. Mol. Cell Biol. 7(5), 359–371 (2006).
    • 83. Robinson CJ, Stringer SE. The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J. Cell Sci. 114(Pt 5), 853–865 (2001).
    • 84. Sisko JT, Tucker TJ, Bilodeau MT et al. Potent 2-[(pyrimidin-4-yl)amine}-1,3-thiazole-5-carbonitrile-based inhibitors of VEGFR-2 (KDR) kinase. Bioorg. Med. Chem. Lett. 16(5), 1146–1150 (2006).
    • 85. Wang C, Gao H, Dong J et al. Biphenyl derivatives incorporating urea unit as novel VEGFR-2 inhibitors: design, synthesis and biological evaluation. Bioorg. Med. Chem. 22(1), 277–284 (2014).
    • 86. Simons M, Gordon E, Claesson-Welsh L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat. Rev. Mol. Cell Biol. 17(10), 611–625 (2016).
    • 87. Mostafa AS, Gomaa RM, Elmorsy MA. Design and synthesis of 2-phenyl benzimidazole derivatives as VEGFR-2 inhibitors with anti-breast cancer activity. Chem. Biol. Drug Des. 93(4), 454–463 (2019).
    • 88. Huang SM, Harari PM. Epidermal growth factor receptor inhibition in cancer therapy: biology, rationale and preliminary clinical results. Invest. New Drugs 17(3), 259–269 (1999).
    • 89. Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol. Oncol. 12(1), 3–20 (2018).
    • 90. Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit. Rev. Oncol. Hematol. 19(3), 183–232 (1995).
    • 91. Schlessinger J. Receptor tyrosine kinases: legacy of the first two decades. Cold Spring Harb. Perspect. Biol. 6(3), a008912 (2014).
    • 92. Yarden Y, Pines G. The ERBB network: at last, cancer therapy meets systems biology. Nat. Rev. Cancer 12(8), 553–563 (2012).
    • 93. Akhtar MJ, Khan AA, Ali Z et al. Synthesis of stable benzimidazole derivatives bearing pyrazole as anticancer and EGFR receptor inhibitors. Bioorg. Chem. 78, 158–169 (2018).
    • 94. Hickinson DM, Klinowska T, Speake G et al. AZD8931, an equipotent, reversible inhibitor of signaling by epidermal growth factor receptor, ERBB2 (HER2), and ERBB3: a unique agent for simultaneous ERBB receptor blockade in cancer. Clin. Cancer Res. 16(4), 1159–1169 (2010).
    • 95. Amin KM, Barsoum FF, Awadallah FM, Mohamed NE. Identification of new potent phthalazine derivatives with VEGFR-2 and EGFR kinase inhibitory activity. Eur. J. Med. Chem. 123, 191–201 (2016).
    • 96. Hei Y-Y, Shen Y, Wang J et al. Synthesis and evaluation of 2,9-disubstituted 8-phenylthio/phenylsulfinyl-9H-purine as new EGFR inhibitors. Bioorg. Med. Chem. 26(8), 2173–2185 (2018).
    • 97. Lei H, Fan S, Zhang H et al. Discovery of novel 9-heterocyclyl substituted 9H-purines as L858R/T790M/C797S mutant EGFR tyrosine kinase inhibitors. Eur. J. Med. Chem. 186, doi:10.1016/j.ejmech.2019.111888 (2020) (Epub ahead of print).
    • 98. Abou-Zied HA, Youssif BGM, Mohamed MFA, Hayallah AM, Abdel-Aziz M. EGFR inhibitors and apoptotic inducers: design, synthesis, anticancer activity and docking studies of novel xanthine derivatives carrying chalcone moiety as hybrid molecules. Bioorg. Chem. 89, doi:10.1016/j.bioorg.2019.102997 (2019).
    • 99. Mitupatum T, Aree K, Kittisenachai S et al. mRNA expression of Bax, Bcl-2, p53, cathepsin B, caspase-3 and caspase-9 in the HepG2 cell line following induction by a novel monoclonal Ab Hep88 mAb: cross-talk for paraptosis and apoptosis. Asian Pac. J. Cancer Prev. 17(2), 703–712 (2016).
    • 100. Hisham M, Youssif BGM, Osman EEA, Hayallah AM, Abdel-Aziz M. Synthesis and biological evaluation of novel xanthine derivatives as potential apoptotic antitumor agents. Eur. J. Med. Chem. 176, 117–128 (2019).
    • 101. Srour AM, Ahmed NS, Abd El-Karim SS, Anwar MM, El-Hallouty SM. Design, synthesis, biological evaluation, QSAR analysis and molecular modelling of new thiazol-benzimidazoles as EGFR inhibitors. Bioorg. Med. Chem. 28(18), doi:10.1016/j.bmc.2020.115657 (2020).
    • 102. Moerkens M, Zhang Y, Wester L, van de Water B, Meerman JHN. Epidermal growth factor receptor signalling in human breast cancer cells operates parallel to estrogen receptor α signalling and results in tamoxifen insensitive proliferation. BMC Cancer 14(1), 283 (2014).
    • 103. Nunes-Xavier CE, Elson A, Pulido R. Epidermal growth factor receptor (EGFR)-mediated positive feedback of protein-tyrosine phosphatase epsilon (PTPepsilon) on ERK1/2 and AKT protein pathways is required for survival of human breast cancer cells. J. Biol. Chem. 287(5), 3433–3444 (2012).
    • 104. Amin KM, Syam YM, Anwar MM, Ali HI, Abdel-Ghani TM, Serry AM. Synthesis and molecular docking study of new benzofuran and furo[3,2-g]chromone-based cytotoxic agents against breast cancer and p38α MAP kinase inhibitors. Bioorg. Chem. 76, 487–500 (2018).
    • 105. Hosamani KM, Reddy DS, Devarajegowda HC. Microwave-assisted synthesis of new fluorinated coumarin–pyrimidine hybrids as potent anticancer agents{,} their DNA cleavage and x-ray crystal studies. RSC Adv. 5(15), 11261–11271 (2015).
    • 106. Luo G, Tang Z, Lao K, Li X, You Q, Xiang H. Structure-activity relationships of 2, 4-disubstituted pyrimidines as dual ERα/VEGFR-2 ligands with anti-breast cancer activity. Eur. J. Med. Chem. 150, 783–795 (2018).
    • 107. Nossier ES, El-hallouty SM, Zaki ER. Synthesis, anticancer evaluation and molecular modeling of some substituted thiazolidinonyl and thiazolyl pyrazole derivatives. Int. J. Pharm. Pharm. Sci. 7(11), 353–359 (2015).
    • 108. Abbas H-AS, Abd El-Karim SS. Design, synthesis and anticervical cancer activity of new benzofuran-pyrazol-hydrazono- thiazolidin-4-one hybrids as potential EGFR inhibitors and apoptosis inducing agents. Bioorg. Chem. 89, doi:10.1016/j.bioorg.2019.103035 (2019) (Epub ahead of print).
    • 109. Syam YM, Anwar MM, Kotb ER, Elseginy SA, Awad HM, Awad GEA. Development of promising thiopyrimidine-based anti-cancer and antimicrobial agents: synthesis and QSAR analysis. Mini Rev. Med. Chem. 19(15), 1255–1275 (2019).
    • 110. Kalra S, Joshi G, Kumar M et al. Anticancer potential of some imidazole and fused imidazole derivatives: exploring the mechanism via epidermal growth factor receptor (EGFR) inhibition. RSC Med. Chem. 11(8), 923–939 (2020).
    • 111. Sawant DM, Sharma S, Pathare RS et al. Relay tricyclic Pd(ii)/Ag(i) catalysis: design of a four-component reaction driven by nitrene-transfer on isocyanide yields inhibitors of EGFR. Chem. Commun. 54(82), 11530–11533 (2018).
    • 112. Chauhan M, Joshi G, Kler H et al. Dual inhibitors of epidermal growth factor receptor and topoisomerase IIα derived from a quinoline scaffold. RSC Adv. 6(81), 77717–77734 (2016).
    • 113. Joshi G, Nayyar H, Kalra S et al. Pyrimidine containing epidermal growth factor receptor kinase inhibitors: synthesis and biological evaluation. Chem. Biol. Drug Des. 90(5), 995–1006 (2017).
    • 114. Rous P. A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J. Exp. Med. 13(4), 397–411 (1911).
    • 115. Brown MT, Cooper JA. Regulation, substrates and functions of src. Biochim. Biophys. Acta 1287(2–3), 121–149 (1996).
    • 116. Thomas SM, Brugge JS. Cellular functions regulated by Src family kinases. Annu. Rev. Cell Dev. Biol. 13, 513–609 (1997).
    • 117. Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2014 update on diagnosis, monitoring, and management. Am. J. Hematol. 89(5), 547–556 (2014).
    • 118. Wu P, Nielsen TE, Clausen MH. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol. Sci. 36(7), 422–439 (2015).
    • 119. Hassan AQ, Sharma SV, Warmuth M. Allosteric inhibition of BCR-ABL. Cell Cycle 9(18), 3710–3714 (2010).
    • 120. Roskoski RJ. Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors. Pharmacol. Res. 94, 9–25 (2015).
    • 121. Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer 9(1), 28–39 (2009).
    • 122. Francini CM, Fallacara AL, Artusi R et al. Identification of aminoimidazole and aminothiazole derivatives as Src family kinase inhibitors. ChemMedChem 10(12), 2027–2041 (2015).
    • 123. Bertrand J, Dostálová H, Krystof V et al. New 2,6,9-trisubstituted purine derivatives as Bcr-Abl and Btk inhibitors and as promising agents against leukemia. Bioorg. Chem. 94, doi:10.1016/j.bioorg.2019.103361 (2020) (Epub ahead of print).
    • 124. Liang C, Tian D, Ren X et al. The development of Bruton's tyrosine kinase (BTK) inhibitors from 2012 to 2017: a mini-review. Eur. J. Med. Chem. 151, 315–326 (2018).
    • 125. Desogus A, Schenone S, Brullo C, Tintori C, Musumeci F. Bcr-Abl tyrosine kinase inhibitors: a patent review. Expert Opin. Ther. Pat. 25(4), 397–412 (2015).
    • 126. Calderón-Arancibia J, Espinosa-Bustos C, Cañete-Molina Á et al. Synthesis and pharmacophore modelling of 2,6,9-trisubstituted purine derivatives and their potential role as apoptosis-inducing agents in cancer cell lines. Molecules 20(4), 6808–6826 (2015).
    • 127. Gucký T, Řezníčková E, Radošová Muchová T et al. Discovery of N(2)-(4-Amino-cyclohexyl)-9-cyclopentyl- N(6)-(4-morpholin-4-ylmethyl-phenyl)- 9H-purine-2,6-diamine as a potent FLT3 kinase inhibitor for acute myeloid leukemia with FLT3 mutations. J. Med. Chem. 61(9), 3855–3869 (2018).
    • 128. Lorz PM, Towae FK, Enke W, Jäckh R, Bhargava N, Hillesheim W. Phthalic acid and derivatives. Ullmann's Encycl. Ind. Chem. doi:10.1002/14356007.a20_181 (2000).
    • 129. Storrie B, Madden EA. Buffer for assay of horseradish peroxidase meth. Enzymologia 182, 217 (1990).
    • 130. Nishie K, Waiss AC Jr, Keyl AC. Toxicity of methylimidazoles. Toxicol. Appl. Pharmacol. 14(2), 301–307 (1969).
    • 131. Shalini K, Sharma PK, Kumar N. Imidazole and its biological activities: a review. Der Chem. Sin. 1(3), 36–47 (2010).
    • 132. Chan PC, Hill GD, Kissling GE, Nyska A. Toxicity and carcinogenicity studies of 4-methylimidazole in F344/N rats and B6C3F1 mice. Arch. Toxicol. 82(1), 45–53 (2008).
    • 133. Uçucu Ü, Karaburun NG, Işikdağ İ. Synthesis and analgesic activity of some 1-benzyl-2-substituted-4, 5-diphenyl-1H-imidazole derivatives. Farmaco Sci. 56(4), 285–290 (2001).
    • 134. Al-Azzawi RW. Evaluation of some properties of three types of denture reline materials with miconazole (antifungal agent) preparation. Master's Thesis, Prosthet. Dep. Univ. Baghdad (2007) (Online).
    • 135. Ebeol K, Koehler H, Gamer AO, Jackh R. Imidazole and derivatives. Ullmann's Encycl. Ind. Chem. Wiley 18, 637–645 (2000).
    • 136. Chen H-L, Kao H-F, Wang J-Y, Wei G-T. Cytotoxicity of imidazole ionic liquids in human lung carcinoma A549 cell line. J. Chinese Chem. Soc. 61(7), 763–769 (2014). •• Toxicity is a major issue hindering the development of new drugs, therefore, a clear idea about toxicity concerns is important, as provided in this study.
    • 137. Nørregaard A, Jensen SS, Kolenda J et al. Effects of chemotherapeutics on organotypic corticostriatal slice cultures identified by a panel of fluorescent and immunohistochemical markers. Neurotox. Res. 22(1), 43–58 (2012).
    • 138. Singh K, Verma V, Yadav K et al. Design, regioselective synthesis and cytotoxic evaluation of 2-aminoimidazole-quinoline hybrids against cancer and primary endothelial cells. Eur. J. Med. Chem. 87, 150–158 (2014).
    • 139. Nepali K, Lee H-Y, Liou J-P. Nitro-group-containing drugs. J. Med. Chem. 62(6), 2851–2893 (2018).
    • 140. Patterson S, Wyllie S, Norval S et al. The anti-tubercular drug delamanid as a potential oral treatment for visceral leishmaniasis. Elife 5, e09744 (2016).
    • 141. Landge S, Ramachandran V, Kumar A et al. Nitroarenes as antitubercular agents: stereoelectronic modulation to mitigate mutagenicity. ChemMedChem 11(3), 331–339 (2016).
    • 142. Boechat N, Carvalho AS, Salomão K et al. Studies of genotoxicity and mutagenicity of nitroimidazoles: demystifying this critical relationship with the nitro group. Mem. Inst. Oswaldo Cruz 110, 492–499 (2015).
    • 143. Rojo G, Castillo C, Duaso J et al. Toxic and therapeutic effects of nifurtimox and benznidazol on Trypanosoma cruzi ex vivo infection of human placental chorionic villi explants. Acta Trop. 132, 112–118 (2014).
    • 144. Wilkinson SR, Bot C, Kelly JM, Hall BS. Trypanocidal activity of nitroaromatic prodrugs: current treatments and future perspectives. Curr. Top. Med. Chem. 11(16), 2072–2084 (2011).
    • 145. Alirol E, Schrumpf D, Amici Heradi J et al. Nifurtimox-eflornithine combination therapy for second-stage gambiense human African trypanosomiasis: Médecins Sans Frontières experience in the Democratic Republic of the Congo. Clin. Infect. Dis. 56(2), 195–203 (2013).
    • 146. Davies C, Dey N, Negrette OS, Parada LA, Basombrio MA, Garg NJ. Hepatotoxicity in mice of a novel anti-parasite drug candidate hydroxymethylnitrofurazone: a comparison with benznidazole. PLOS Negl. Trop. Dis. 8(10), e3231 (2014).
    • 147. Minsky BD, Leibel SA. The treatment of hepatic metastases from colorectal cancer with radiation therapy alone or combined with chemotherapy or misonidazole. Cancer treatment reviews 16(4), 213–9 (1989).
    • 148. Bahia MT, Andrade IM, Martins TA et al. Fexinidazole: a potential new drug candidate for Chagas disease. PLOS neglected tropical diseases 6(11), e1870 (2012).
    • 149. Bleehen NM, Maughan TS, Workman P, Newman HF, Stenning S, Ward R. The combination of multiple doses of etanidazole and pimonidazole in 48 patients: a toxicity and pharmacokinetic study. Radiother. Oncol. 20, 137–142 (1991).
    • 150. Carvalho AS, Salomão K, Castro SL et al. Megazol and its bioisostere 4H-1, 2, 4-triazole: comparing the trypanocidal, cytotoxic and genotoxic activities and their in vitro and in silico interactions with the Trypanosoma brucei nitroreductase enzyme. Mem. Inst. Oswaldo Cruz 109, 315–323 (2014).
    • 151. Matsumoto M, Hashizume H, Tomishige T et al. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLOS Med. 3(11), e466 (2006).