We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Nanoparticle delivery strategies to target doxorubicin to tumor cells and reduce side effects

    Yiguang Wang

    Protein & Peptide Pharmaceutical Laboratory, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China

    ,
    Xiuli Wei

    Protein & Peptide Pharmaceutical Laboratory, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China

    ,
    Chunling Zhang

    Protein & Peptide Pharmaceutical Laboratory, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China

    ,
    Fayun Zhang

    Protein & Peptide Pharmaceutical Laboratory, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China

    &
    Published Online:https://doi.org/10.4155/tde.10.24

    Doxorubicin (DOX) is one of the most active anticancer drugs, while its cumulative dose-dependent side effects compromise the anticancer efficacy. Nanoparticles, an emerging platform for cancer therapy, have been shown to increase intracellular uptake of DOX with reduced side effects compared with conventional DOX formulations. While large numbers of clinical and preclinical studies have been published, the purpose of this review is to draw attention to the developments of DOX-loaded nanoparticles for cancer therapy, with special a focus on enhanced intracellular uptake and reduced side-effects strategies.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Hortobagyi GN. Anthracyclines in the treatment of cancer. An overview. Drugs.54(Suppl. 4),1–7 (1997).
    • Maluf FC, Spriggs D. Anthracyclines in the treatment of gynecologic malignancies. Gynecol. Oncol.85(1),18–31 (2002).
    • Gewirtz DA. A critical evaluation of the mechanisms of action proposed for the anti-tumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem. Pharmacol.57(7),727–741 (1999).
    • Olson RD, Mushlin PS. Doxorubicin cardiotoxicity: analysis of prevailing hypotheses. FASEB J.4(13),3076–3086 (1990).
    • Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov.7(9),771–782 (2008).▪▪ Good review that highlights the features of nanoparticle therapeutics that distinguish them from previous anticancer therapies and describes how these features provide the potential for therapeutic effects.
    • Peer D, Karp JM, Hong S et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol.2(12),751–760 (2007).▪▪ Good review that examines some of the approved formulations and discusses the challenges in translating basic research to the clinic.
    • Maeda H, Wu J, Sawa T et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control Release65(1–2),271–284 (2000).▪ Key publication on the mechanism the significance of enhanced permeation and retention effect.
    • Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev.60(15),1615–1626 (2008).
    • Lammers T, Hennink WE, Storm G. Tumour-targeted nanomedicines: principles and practice. Br. J. Cancer.99(3),392–397 (2008).
    • 10  Batist G, Barton J, Chaikin P et al. Myocet (liposome-encapsulated doxorubicin citrate): a new approach in breast cancer therapy. Expert Opin. Pharmacother.3(12),1739–1751 (2002).
    • 11  Leonard RC, Williams S, Tulpule A et al. Improving the therapeutic index of anthracycline chemotherapy: focus on liposomal doxorubicin (Myocet). Breast.18(4),218–224 (2009).
    • 12  James ND, Coker RJ, Tomlinson D et al. Liposomal doxorubicin (Doxil): an effective new treatment for Kaposi’s sarcoma in AIDS. Clin. Oncol. (R. Coll. Radiol.)6(5),294–296 (1994).
    • 13  Tejada-Berges T, Granai CO, Gordinier M et al. Caelyx/Doxil for the treatment of metastatic ovarian and breast cancer. Expert Rev. Anticancer Ther.2(2),143–150 (2002).
    • 14  Sutton D, Nasongkla N, Blanco E et al. Functionalized micellar systems for cancer targeted drug delivery. Pharm. Res.24(6),1029–1046 (2007).▪ Provides a review on functionalized micelles for tumor-targeted delivery.
    • 15  Sparano JA, Winer EP. Liposomal anthracyclines for breast cancer. Semin. Oncol.28(4 Suppl. 12),32–40 (2001).
    • 16  Batist G, Ramakrishnan G, Rao CS et al. Reduced cardiotoxicity and preserved anti-tumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J. Clin. Oncol.19(5),1444–1454 (2001).
    • 17  Harris L, Batist G, Belt R et al. Liposome-encapsulated doxorubicin compared with conventional doxorubicin in a randomized multicenter trial as first-line therapy of metastatic breast carcinoma. Cancer.94(1),25–36 (2002).
    • 18  Chan S, Davidson N, Juozaityte E et al. Phase III trial of liposomal doxorubicin and cyclophosphamide compared with epirubicin and cyclophosphamide as first-line therapy for metastatic breast cancer. Ann. Oncol.15(10),1527–1534 (2004).
    • 19  Elbayoumi TA, Torchilin VP. Tumor-specific antibody-mediated targeted delivery of Doxil reduces the manifestation of auricular erythema side effect in mice. Int. J. Pharm.357(1–2),272–279 (2008).
    • 20  Cheng WW, Allen TM. Targeted delivery of anti-CD19 liposomal doxorubicin in B-cell lymphoma: a comparison of whole monoclonal antibody, Fab’ fragments and single chain Fv. J. Control Release.126(1),50–58 (2008).
    • 21  Yamada A, Taniguchi Y, Kawano K et al. Design of folate-linked liposomal doxorubicin to its anti-tumor effect in mice. Clin. Cancer Res.14(24),8161–8168 (2008).
    • 22  Schiffelers RM, Koning GA, ten Hagen TL et al. Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. J. Control Release.91(1–2),115–122 (2003).
    • 23  Allen TM, Mumbengegwi DR, Charrois GJ. Anti-CD19-targeted liposomal doxorubicin improves the therapeutic efficacy in murine B-cell lymphoma and ameliorates the toxicity of liposomes with varying drug release rates. Clin. Cancer Res.11(9),3567–3573 (2005).
    • 24  Pastorino F, Brignole C, Marimpietri D et al. Doxorubicin-loaded Fab’ fragments of anti-disialoganglioside immunoliposomes selectively inhibit the growth and dissemination of human neuroblastoma in nude mice. Cancer Res.63(1),86–92 (2003).
    • 25  Murphy EA, Majeti BK, Barnes LA et al. Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc. Natl Acad. Sci. USA105(27),9343–9348 (2008).
    • 26  Lee TY, Lin CT, Kuo SY et al. Peptide-mediated targeting to tumor blood vessels of lung cancer for drug delivery. Cancer Res.67(22),10958–10965 (2007).
    • 27  Moreira JN, Gaspar R. Antagonist G-mediated targeting and cytotoxicity of liposomal doxorubicin in NCI-H82 variant small cell lung cancer. Braz. J. Med. Biol. Res.37(8),1185–1192 (2004).
    • 28  Kobayashi T, Ishida T, Okada Y et al. Effect of transferrin receptor-targeted liposomal doxorubicin in P-glycoprotein-mediated drug resistant tumor cells. Int. J. Pharm.329(1–2),94–102 (2007).
    • 29  Saul JM, Annapragada A, Natarajan JV et al. Controlled targeting of liposomal doxorubicin via the folate receptor in vitro. J. Control Release.92(1–2),49–67 (2003).
    • 30  Gabizon A, Tzemach D, Gorin J et al. Improved therapeutic activity of folate-targeted liposomal doxorubicin in folate receptor-expressing tumor models. Cancer Chemother. Pharmacol.66(1),43–52 (2010).
    • 31  Peer D, Margalit R. Tumor-targeted hyaluronan nanoliposomes increase the anti-tumor activity of liposomal doxorubicin in syngeneic and human xenograft mouse tumor models. Neoplasia.6(4),343–353 (2004).
    • 32  Eliaz RE, Szoka FC Jr. Liposome-encapsulated doxorubicin targeted to CD44: a strategy to kill CD44-overexpressing tumor cells. Cancer Res.61(6),2592–2601 (2001).
    • 33  Song CK, Jung SH, Kim DD et al. Disaccharide-modified liposomes and their in vitro intracellular uptake. Int. J. Pharm.380(1–2),161–169 (2009).
    • 34  Elbayoumi TA, Torchilin VP. Enhanced cytotoxicity of monoclonal anticancer antibody 2C5-modified doxorubicin-loaded PEGylated liposomes against various tumor cell lines. Eur. J. Pharm. Sci.32(3),159–168 (2007).
    • 35  Lukyanov AN, Elbayoumi TA, Chakilam AR et al. Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J. Control Release.100(1),135–144 (2004).
    • 36  Elbayoumi TA, Pabba S, Roby A et al. Antinucleosome antibody-modified liposomes and lipid-core micelles for tumor-targeted delivery of therapeutic and diagnostic agents. J. Liposome Res.17(1),1–14 (2007).
    • 37  Elbayoumi TA, Torchilin VP. Tumor-specific anti-nucleosome antibody improves therapeutic efficacy of doxorubicin-loaded long-circulating liposomes against primary and metastatic tumor in mice. Mol. Pharm.6(1),246–254 (2009).
    • 38  Elbayoumi TA, Torchilin VP. Tumor-targeted nanomedicines: enhanced anti-tumor efficacy in vivo of doxorubicin-loaded, long-circulating liposomes modified with cancer-specific monoclonal antibody. Clin. Cancer Res.15(6),1973–1980 (2009).
    • 39  Pastorino F, Brignole C, Marimpietri D et al. Vascular damage and anti-angiogenic effects of tumor vessel-targeted liposomal chemotherapy. Cancer Res.63(21),7400–7409 (2003).▪ Interesting paper on tumor vessel-targeted liposomal doxorubicin.
    • 40  Pastorino F, Brignole C, Di Paolo D et al. Targeting liposomal chemotherapy via both tumor cell-specific and tumor vasculature-specific ligands potentiates therapeutic efficacy. Cancer Res.66(20),10073–10082 (2006).▪ Interesting paper on tumor cell- and tumor vasculature-targeted liposomal doxorubicin.
    • 41  Loi M, Marchio S, Becherini P et al. Combined targeting of perivascular and endothelial tumor cells enhances anti-tumor efficacy of liposomal chemotherapy in neuroblastoma. J. Control Release.145(1),66–73 (2010).
    • 42  Longmuir KJ, Haynes SM, Baratta JL et al. Liposomal delivery of doxorubicin to hepatocytes in vivo by targeting heparan sulfate. Int. J. Pharm.382(1–2),222–233 (2009).
    • 43  Cheong I, Huang X, Bettegowda C et al. A bacterial protein enhances the release and efficacy of liposomal cancer drugs. Science.314(5803),1308–1311 (2006).▪ Interesting paper on targeting drugs to tumors with bacteria.
    • 44  Cheong I, Huang X, Thornton K et al. Targeting cancer with bugs and liposomes: ready, aim, fire. Cancer Res.67(20),9605–9608 (2007).
    • 45  Wang Y, Wang R, Lu X et al. Pegylated phospholipids-based self-assembly with water-soluble drugs. Pharm. Res.27(2),361–370 (2010).
    • 46  Matsumura Y, Hamaguchi T, Ura T et al. Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br. J. Cancer.91(10),1775–1781 (2004).
    • 47  Kuroda J, Kuratsu J, Yasunaga M et al. Potent antitumor effect of SN-38-incorporating polymeric micelle, NK012, against malignant glioma. Int. J. Cancer.124(11),2505–2511 (2009).
    • 48  Matsumura Y. Poly (amino acid) micelle nanocarriers in preclinical and clinical studies. Adv. Drug Deliv. Rev.60(8),899–914 (2008).▪ Good review on poly(amino acid) micelles in preclinical and clinical studies.
    • 49  Danson S, Ferry D, Alakhov V et al. Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br. J. Cancer.90(11),2085–2091 (2004).
    • 50  Kim DW, Kim SY, Kim HK et al. Multicenter Phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Ann. Oncol.18(12),2009–2014 (2007).
    • 51  Lee KS, Chung HC, Im SA et al. Multicenter Phase II trial of Genexol-PM, a cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res. Treat.108(2),241–250 (2008).
    • 52  Valle JW, Armstrong A, Newman C et al. A Phase II study of SP1049C, doxorubicin in P-glycoprotein-targeting pluronics, in patients with advanced adenocarcinoma of the esophagus and gastroesophageal junction. Invest New Drugs. DOI: 10.1007/s10637-010-9399-9391 (2010) (Epub ahead of print).
    • 53  Tang N, Du G, Wang N et al. Improving penetration in tumors with nanoassemblies of phospholipids and doxorubicin. J. Natl Cancer Inst.99(13),1004–1015 (2007).
    • 54  Tsukioka Y, Matsumura Y, Hamaguchi T et al. Pharmaceutical and biomedical differences between micellar doxorubicin (NK911) and liposomal doxorubicin (Doxil). Jpn J. Cancer Res.93(10),1145–1153 (2002).
    • 55  Yoo HS, Park TG. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J. Control Release.96(2),273–283 (2004).
    • 56  Yoo HS, Park TG. Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate. J. Control Release.100(2),247–256 (2004).
    • 57  Tsai HC, Chang WH, Lo CL et al. Graft and diblock copolymer multifunctional micelles for cancer chemotherapy and imaging. Biomaterials31(8),2293–2301 (2010).
    • 58  Kim D, Gao ZG, Lee ES et al.In vivo evaluation of doxorubicin-loaded polymeric micelles targeting folate receptors and early endosomal pH in drug-resistant ovarian cancer. Mol. Pharm.6(5),1353–1362 (2009).
    • 59  Kim D, Lee ES, Oh KT et al. Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH. Small4(11),2043–2050 (2008).
    • 60  Nasongkla N, Shuai X, Ai H et al. cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew Chem. Int. Ed. Engl.43(46),6323–6327 (2004).
    • 61  Nasongkla N, Bey E, Ren J et al. Multi
functional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett.6(11),2427–2430 (2006).
    • 62  Xiong XB, Ma Z, Lai R et al. The therapeutic response to multifunctional polymeric nano-conjugates in the targeted cellular and subcellular delivery of doxorubicin. Biomaterials31(4),757–768 (2010).
    • 63  Kataoka K, Matsumoto T, Yokoyama M et al. Doxorubicin-loaded poly(ethylene glycol)-poly(β-benzyl-L-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. J. Control Release64(1–3),143–153 (2000).
    • 64  Bae Y, Nishiyama N, Fukushima S et al. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo anti-tumor efficacy. Bioconjug. Chem.16(1),122–130 (2005).
    • 65  Hruby M, Konak C, Ulbrich K. Polymeric micellar pH-sensitive drug-delivery system for doxorubicin. J. Control Release103(1),137–148 (2005).
    • 66  Bae Y, Fukushima S, Harada A et al. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew Chem. Int. Ed. Engl.42(38),4640–4643 (2003).
    • 67  Bae Y, Jang WD, Nishiyama N et al. Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol. Biosyst.1(3),242–250 (2005).
    • 68  Lee ES, Na K, Bae YH. Polymeric micelle for tumor pH and folate-mediated targeting. J. Control Release.91(1–2),103–113 (2003).
    • 69  Lee ES, Na K, Bae YH. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J. Control Release103(2),405–418 (2005).
    • 70  Lee ES, Gao Z, Kim D et al. Super pH-sensitive multifunctional polymeric micelle for tumor pH(e) specific TAT exposure and multidrug resistance. J. Control Release129(3),228–236 (2008).▪ Interesting paper on super pH-sensitive multifunctional polymeric micelles.
    • 71  Lee ES, Na K, Bae YH. Super pH-sensitive multifunctional polymeric micelle. Nano Lett.5(2),325–329 (2005).
    • 72  Sethuraman VA, Bae YH. TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors. J. Control Release.118(2),216–224 (2007).
    • 73  Holmgren L, O’Reilly MS, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat. Med.1(2),149–153 (1995).
    • 74  Satchi-Fainaro R, Puder M, Davies JW et al. Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470. Nat. Med.10(3),255–261 (2004).
    • 75  Tozer GM, Kanthou C, Baguley BC. Disrupting tumour blood vessels. Nat. Rev. Cancer5(6),423–435 (2005).
    • 76  Sengupta S, Eavarone D, Capila I et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature436(7050),568–572 (2005).▪ Interesting paper on the combination of chemotherapy and antiangiogenic therapy using nanotechnology.
    • 77  Mooney D. Cancer: one step at a time. Nature436,468–469 (2005).
    • 78  MacKay JA, Chen M, McDaniel JR et al. Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection. Nat. Mater.8(12),993–999 (2009).
    • 79  Park J, Fong PM, Lu J et al. PEGylated PLGA nanoparticles for the improved delivery of doxorubicin. Nanomedicine5(4),410–418 (2009).
    • 80  Li YL, Zhu L, Liu Z et al. Reversibly stabilized multifunctional dextran nanoparticles efficiently deliver doxorubicin into the nuclei of cancer cells. Angew Chem. Int. Ed. Engl.48(52),9914–9918 (2009).
    • 81  Maeng JH, Lee DH, Jung KH et al. Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials31(18),4995–5006 (2010).
    • 82  Kim B, Han G, Toley BJ et al. Tuning payload delivery in tumour cylindroids using gold nanoparticles. Nat. Nanotechnol.5,465–472 (2010).
    • 83  Duncan R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer.6(9),688–701 (2006).▪ Good review on polymer–anticancer drug conjugates.
    • 84  Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer5(3),161–171 (2005).
    • 85  Gillies ER, Frechet JM. Dendrimers and dendritic polymers in drug delivery. Drug Discov. Today10(1),35–43 (2005).
    • 86  Lee CC, Gillies ER, Fox ME et al. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc. Natl Acad. Sci. USA103(45),16649–16654 (2006).▪ Interesting paper on doxorubicin-functionalized dendrimer.
    • 87  Kono K, Kojima C, Hayashi N et al. Preparation and cytotoxic activity of poly(ethylene glycol)-modified poly(amidoamine) dendrimers bearing adriamycin. Biomaterials29(11),1664–1675 (2008).
    • 88  Kaneshiro TL, Lu ZR. Targeted intracellular codelivery of chemotherapeutics and nucleic acid with a well-defined dendrimer-based nanoglobular carrier. Biomaterials30(29),5660–5666 (2009).
    • 89  Rapoport N, Pitt WG, Sun H et al. Drug delivery in polymeric micelles: from in vitro to in vivo. J. Control Release91(1–2),85–95 (2003).
    • 90  Husseini GA, Runyan CM, Pitt WG. Investigating the mechanism of acoustically activated uptake of drugs from Pluronic micelles. BMC Cancer2,20 (2002).
    • 91  Marin A, Sun H, Husseini GA et al. Drug delivery in pluronic micelles: effect of high-frequency ultrasound on drug release from micelles and intracellular uptake. J. Control Release84(1–2),39–47 (2002).
    • 92  Rapoport NY, Herron JN, Pitt WG et al. Micellar delivery of doxorubicin and its paramagnetic analog, ruboxyl, to HL-60 cells: effect of micelle structure and ultrasound on the intracellular drug uptake. J. Control Release58(2),153–162 (1999).
    • 93  Ferrara KW. Driving delivery vehicles with ultrasound. Adv. Drug Deliv. Rev.60(10),1097–1102 (2008).
    • 94  Frenkel V. Ultrasound mediated delivery of drugs and genes to solid tumors. Adv. Drug Deliv. Rev.60(10),1193–1208 (2008).
    • 95  Vandenbroucke RE, Lentacker I, Demeester J et al. Ultrasound assisted siRNA delivery using PEG-siPlex loaded microbubbles. J. Control Release126(3),265–273 (2008).
    • 96  Lentacker I, Vandenbroucke RE, Lucas B et al. New strategies for nucleic acid delivery to conquer cellular and nuclear membranes. J. Control Release.132(3),279–288 (2008).
    • 97  Lentacker I, Geers B, Demeester J et al. Design and evaluation of doxorubicin-containing microbubbles for ultrasound-triggered doxorubicin delivery: cytotoxicity and mechanisms involved. Mol. Ther.18(1),101–108 (2010).
    • 98  Kerbel RS, Kamen BA. The anti-angiogenic basis of metronomic chemotherapy. Nat. Rev. Cancer4(6),423–436 (2004).▪ Good review on metronomic chemotherapy.
    • 99  Browder T, Butterfield CE, Kraling BM et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res.60(7),1878–1886 (2000).
    • 100  Italiano A, Toulmonde M, Lortal B et al. “Metronomic” chemotherapy in advanced soft tissue sarcomas. Cancer Chemother. Pharmacol.66(1),197–202 (2010).
    • 101  Munzone E, Di Pietro A, Goldhirsch A et al. Metronomic administration of pegylated liposomal-doxorubicin in extensively pre-treated metastatic breast cancer patients: a mono-institutional case-series report. Breast19(1),33–37 (2010).
    • 102  Allen TM, Cullis PR. Drug-delivery systems: entering the mainstream. Science303(5665),1818–1822 (2004).